Skip to main content

Advertisement

Log in

Phenotype and function of tumor-associated neutrophils and their subsets in early-stage human lung cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Neutrophils accumulate in many types of human and murine tumors and represent a significant portion of tumor-infiltrating myeloid cells. Our current understanding of the role of neutrophils in tumor development has depended primarily on murine models of cancer. However, there are crucial species differences in the evolution of tumors, genetic diversity, immune and inflammatory responses, and intrinsic biology of neutrophils that might have a profound impact on the tumor development and function of neutrophils in mouse versus human tumors. To date, the majority of experimental approaches to study neutrophils in cancer patients have been limited to the examination of circulating blood neutrophils. The phenotype and function of tumor-associated neutrophils (TANs) in humans, particularly in the early stages of tumor development, have not been extensively investigated. Thus, the long-term goal of our work has been to characterize human TANs and determine their specific role in tumor development. Here, we summarize our findings on human TANs obtained from human early stage lung cancer patients. We will describe the phenotypes of different TAN subsets identified in early stage lung tumors, as well as their functional dialog with T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factors

G-MDSCs:

Granulocytic-myeloid-derived suppressor cells

HGF:

Hepatocyte growth factor

ICAM-1:

Intercellular adhesion molecule 1

LDN:

Low-density neutrophils

MCP-1:

Monocyte chemotactic protein 1

MPO:

Myeloperoxidase

NDN:

Normal density neutrophils

NSCLC:

Non-small cell lung carcinoma

NY-ESO-1:

New York-esophageal cancer-1

PBNs:

Peripheral blood neutrophils

PMN-MDSC:

Polymorphonuclear myeloid-derived suppressor cells

TANs:

Tumor-associated neutrophils

VEGF:

Vascular endothelial growth factor

References

  1. Brandau S (2013) The dichotomy of neutrophil granulocytes in cancer. Semin Cancer Biol 23:139–140

    Article  CAS  PubMed  Google Scholar 

  2. Sionov RV, Fridlender ZG, Granot Z (2015) The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron 8:125–158

    Article  CAS  PubMed  Google Scholar 

  3. Granot Z, Jablonska J (2015) Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm 2015:701067

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431–446

    Article  CAS  PubMed  Google Scholar 

  5. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    Article  CAS  PubMed  Google Scholar 

  7. Zschaler J, Schlorke D, Arnhold J (2014) Differences in innate immune response between man and mouse. Crit Rev Immunol 34:433–454

    CAS  PubMed  Google Scholar 

  8. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  9. Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  CAS  PubMed  Google Scholar 

  10. Moses K, Brandau S (2016) Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 28:187–196

    Article  CAS  PubMed  Google Scholar 

  11. Scapini P, Marini O, Tecchio C, Cassatella MA (2016) Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol Rev 273:48–60

    Article  CAS  PubMed  Google Scholar 

  12. Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z, Fridlender ZG (2014) Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity. Int J Cancer 135:1178–1186

    Article  CAS  PubMed  Google Scholar 

  13. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A, Hovav AH, Henke E, Fridlender ZG, Granot Z (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–573

    Article  CAS  PubMed  Google Scholar 

  14. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, Ho AD (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627–1634

    Article  CAS  PubMed  Google Scholar 

  16. Radsak M, Iking-Konert C, Stegmaier S, Andrassy K, Hansch GM (2000) Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation. Immunology 101:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulder WM, Koenen H, van de Muysenberg AJ, Bloemena E, Wagstaff J, Scheper RJ (1994) Reduced expression of distinct T-cell CD molecules by collagenase/DNase treatment. Cancer Immunol Immunother 38:253–258

    CAS  PubMed  Google Scholar 

  18. Quatromoni JG, Singhal S, Bhojnagarwala P, Hancock WW, Albelda SM, Eruslanov E (2015) An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. J Leukoc Biol 97:201–209

    Article  PubMed  Google Scholar 

  19. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, Conejo-Garcia JR, Feldman M, Albelda SM, Singhal S (2014) Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124:5466–5480

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singhal S, Bhojnagarwala PS, O’Brien S, Moon EK, Garfall AL, Rao AS, Quatromoni JG, Stephen TL, Litzky L, Deshpande C, Feldman MD, Hancock WW, Conejo-Garcia JR, Albelda SM, Eruslanov EB (2016) Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30:120–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fortunati E, Kazemier KM, Grutters JC, Koenderman L, Van den Bosch V (2009) Human neutrophils switch to an activated phenotype after homing to the lung irrespective of inflammatory disease. Clin Exp Immunol 155:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C, Lonardi S, Pelletier M, Schakel K, Pizzolo G, Facchetti F, Vermi W, Albanesi C, Cassatella MA (2011) Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood 117:1677–1686

    Article  CAS  PubMed  Google Scholar 

  23. Hartl D, Krauss-Etschmann S, Koller B, Hordijk PL, Kuijpers TW, Hoffmann F, Hector A, Eber E, Marcos V, Bittmann I, Eickelberg O, Griese M, Roos D (2008) Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J Immunol 181:8053–8067

    Article  CAS  PubMed  Google Scholar 

  24. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML, Magistrelli G, Masternak K, Chevailler A, Delneste Y, Jeannin P (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117:1196–1204

    Article  CAS  PubMed  Google Scholar 

  25. Ariel A, Fredman G, Sun YP, Kantarci A, Van Dyke TE, Luster AD, Serhan CN (2006) Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 7:1209–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandilands GP, McCrae J, Hill K, Perry M, Baxter D (2006) Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology 119:562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geng S, Matsushima H, Okamoto T, Yao Y, Lu R, Page K, Blumenthal RM, Ward NL, Miyazaki T, Takashima A (2013) Emergence, origin, and function of neutrophil-dendritic cell hybrids in experimentally induced inflammatory lesions in mice. Blood 121:1690–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, Kotol PF, Chojnacki BJ, Miyazaki T, Gallo RL, Takashima A (2013) Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 121:1677–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY (2011) Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hansch GM, Wagner C (2003) Expression of MHC class II antigen and coreceptor molecules in polymorphonuclear neutrophils. Chem Immunol Allergy 83:45–63

    Article  PubMed  Google Scholar 

  31. Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR (2005) Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol 78:1408–1418

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimura T, Takahashi M (2007) IFN-gamma-mediated survival enables human neutrophils to produce MCP-1/CCL2 in response to activation by TLR ligands. J Immunol 179:1942–1949

    Article  CAS  PubMed  Google Scholar 

  33. Rand ML, Warren JS, Mansour MK, Newman W, Ringler DJ (1996) Inhibition of T cell recruitment and cutaneous delayed-type hypersensitivity-induced inflammation with antibodies to monocyte chemoattractant protein-1. Am J Pathol 148:855–864

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Charmoy M, Brunner-Agten S, Aebischer D, Auderset F, Launois P, Milon G, Proudfoot AE, Tacchini-Cottier F (2010) Neutrophil-derived CCL3 is essential for the rapid recruitment of dendritic cells to the site of Leishmania major inoculation in resistant mice. PLoS Pathog 5:6 (2)

    Google Scholar 

  35. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201:1281–1292

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101:3568–3573

    Article  CAS  PubMed  Google Scholar 

  37. Beauvillain C, Delneste Y, Scotet M, Peres A, Gascan H, Guermonprez P, Barnaba V, Jeannin P (2007) Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110:2965–2973

    Article  CAS  PubMed  Google Scholar 

  38. Thewissen M, Damoiseaux J, van de Gaar J, Tervaert JW (2011) Neutrophils and T cells: bidirectional effects and functional interferences. Mol Immunol 48:2094–2101

    Article  CAS  PubMed  Google Scholar 

  39. Ashtekar AR, Saha B (2003) Poly’s plea: membership to the club of APCs. Trends Immunol 24:485–490

    Article  CAS  PubMed  Google Scholar 

  40. Potter NS, Harding CV (2001) Neutrophils process exogenous bacteria via an alternate class I MHC processing pathway for presentation of peptides to T lymphocytes. J Immunol 167:2538–2546

    Article  CAS  PubMed  Google Scholar 

  41. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122:327–336

    Article  CAS  PubMed  Google Scholar 

  42. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    CAS  PubMed  Google Scholar 

  43. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  CAS  PubMed  Google Scholar 

  44. Karulf M, Kelly A, Weinberg AD, Gold JA (2010) OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J Immunol 185:4856–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Andarini S, Kikuchi T, Nukiwa M, Pradono P, Suzuki T, Ohkouchi S, Inoue A, Maemondo M, Ishii N, Saijo Y, Sugamura K, Nukiwa T (2004) Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res 64:3281–3287

    Article  CAS  PubMed  Google Scholar 

  46. Chacon JA, Wu RC, Sukhumalchandra P, Molldrem JJ, Sarnaik A, Pilon-Thomas S, Weber J, Hwu P, Radvanyi L (2013) Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8:e60031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Granot Z, Fridlender ZG (2015) Plasticity beyond cancer cells and the “immunosuppressive switch”. Cancer Res 75:4441–4445

    Article  CAS  PubMed  Google Scholar 

  48. Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG (2013) Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother 62:1745–1756

    Article  CAS  PubMed  Google Scholar 

  49. Tvinnereim AR, Hamilton SE, Harty JT (2004) Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J Immunol 173:1994–2002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Steven Albelda, Jason Stadanlick, Abhishek Rao, and Michael Annunziata for critical reading of this review. This work was supported by the Department of Defense (LC140199 # W81XWH-15-1-0717 to Evgeniy Eruslanov), National Institutes of Health (NIH)/National Cancer Institute (NCI) (RO1 CA187392-01A1 to Evgeniy Eruslanov), and the Lung Cancer Translation Center of Excellence of the Abramson Cancer Center at the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy B. Eruslanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th—19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eruslanov, E.B. Phenotype and function of tumor-associated neutrophils and their subsets in early-stage human lung cancer. Cancer Immunol Immunother 66, 997–1006 (2017). https://doi.org/10.1007/s00262-017-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1976-0

Keywords

Navigation