Skip to main content

Advertisement

Log in

Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It has been demonstrated that aggressive in situ tumor destruction (ablation) could lead to the release of tumor antigens, which can stimulate anti-tumor immune responses. We developed an innovative method of tumor ablation based on intratumoral alpha-irradiation, diffusing alpha-emitters radiation therapy (DaRT), which efficiently ablates local tumors and enhances anti-tumor immunity. In this study, we investigated the anti-tumor potency of a treatment strategy, which combines DaRT tumor ablation with two approaches for the enhancement of anti-tumor reactivity: (1) neutralization of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and (2) boost the immune response by the immunoadjuvant CpG. Mice bearing DA3 mammary adenocarcinoma with metastases were treated with DaRT wires in combination with a MDSC inhibitor (sildenafil), Treg inhibitor (cyclophosphamide at low dose), and the immunostimulant, CpG. Combination of all four therapies led to a complete rejection of primary tumors (in 3 out of 20 tumor-bearing mice) and to the elimination of lung metastases. The treatment with DaRT and Treg or MDSC inhibitors (without CpG) also resulted in a significant reduction in tumor size, reduced the lung metastatic burden, and extended survival compared to the corresponding controls. We suggest that the therapy with DaRT combined with the inhibition of immunosuppressive cells and CpG reinforced both local and systemic anti-tumor immune responses and displayed a significant anti-tumor effect in tumor-bearing mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Bq:

Becquerel

CP:

Cyclophosphamide

CSC:

Cancer stem cell

CT:

Computed tomography

DaRT:

Diffusing alpha-emitters radiation therapy

i.p:

Intra-peritoneal

i.v:

Intra-venous

MDSC:

Myeloid-derived suppressor cell

NR:

No response

NT:

Non-treated

PBS:

Phosphate buffered saline

PR:

Partial response 

Ra:

Radium

s.c:

Subcutaneous

Treg:

Regulatory T cell

References

  1. Corthay A (2014) Does the immune system naturally protect against cancer? Front Immunol 5:197 (eCollection)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nobler MP (1969) The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology 93:410–412

    Article  CAS  PubMed  Google Scholar 

  3. Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    Article  PubMed  Google Scholar 

  4. Crittenden M, Kohrt H, Levy R et al (2015) Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 25:54–64

    Article  PubMed  PubMed Central  Google Scholar 

  5. Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36

    Article  CAS  PubMed  Google Scholar 

  6. Arazi L, Cooks T, Schmidt M et al (2007) Treatment of solid tumours by interstitial release of recoiling short-lived alpha emitters. Phys Med Biol 52:5025–5042

    Article  CAS  PubMed  Google Scholar 

  7. Cooks T, Schmidt M, Bittan H et al (2009) Local control of lung derived tumors by diffusing alpha-emitting atoms released from intratumoral wires loaded with radium-224. Int J Radiat Oncol Biol Phys 74:966–973

    Article  CAS  PubMed  Google Scholar 

  8. Horev-Drori G, Cooks T, Bittan H et al (2012) Local control of experimental malignant pancreatic tumors by treatment with a combination of chemotherapy and intratumoral 224 radium-loaded wires releasing alpha-emitting atoms. Transl Res 159:32–41

    Article  CAS  PubMed  Google Scholar 

  9. Cooks T, Tal M, Raab S et al (2012) Intratumoral 224Ra-loaded wires spread alpha-emitters inside solid human tumors in athymic mice achieving tumor control. Anticancer Res 32:5315–5321

    PubMed  Google Scholar 

  10. Reitkopf-Brodutch S, Confino H, Schmidt M et al (2015) Ablation of experimental colon cancer by intratumoral 224Radium loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy. Int J Radiat Biol 91(2):179–186

    Article  CAS  PubMed  Google Scholar 

  11. Keisari Y, Hochman I, Confino H et al (2014) Activation of local and systemic anti-tumor immune responses by ablation of solid tumors with intra-tumoral electrochemical or alpha radiation treatments. Cancer Immunol Immunother 63:1–9

    Article  CAS  PubMed  Google Scholar 

  12. Confino H, Hochman I, Efrati M et al (2015) Induction of anti-tumor immunity against experimental metastatic tumors following tumor ablation by intratumoral Ra-224 loaded wires. Cancer Immunol Immunother 64:191–199

    Article  CAS  PubMed  Google Scholar 

  13. Prehn RT, Prehn LM (2008) The flip side of immune surveillance: immune dependency. Immunol Rev 222:341–356

    Article  CAS  PubMed  Google Scholar 

  14. North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells. Cancer Immunol Immunother 16(3):175–181

    Article  CAS  PubMed  Google Scholar 

  15. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanchot C, Terme M, Pere H et al (2013) Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 6:147–157

    Article  CAS  PubMed  Google Scholar 

  17. Banerjee A, Vasanthakumar A, Grigoriadis G (2013) Modulating T regulatory cells in cancer: how close are we? Immunol Cell Biol 91(5):340–349

    Article  CAS  PubMed  Google Scholar 

  18. Oleinika K, Nibbs RJ, Graham GJ et al (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe MA, Oda JM, Amarante MK, Cesar Voltarelli J (2010) Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev 29(4):569–579

    Article  CAS  PubMed  Google Scholar 

  20. Danilin S, Merkel AR, Johnson JR et al (2012) Myeloid—derived suppressor cells expand during breast cancer progression and promote tumor—induced bone destruction. Oncoimmunology 1(9):1484–1494

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carrio R, Torroella-Kouri M, Libreros S et al (2011) Decreased accumulation of immune regulatory cells is correlated to the antitumor effect of IFN-γ overexpression in the tumor. Int J Oncol 39:1619–1627

    CAS  PubMed  Google Scholar 

  22. Youn JI, Nagaraj S, Gabrilovich MI (2008) Subset of myeloid—derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reginato E, Mroz P, Chung H et al (2013) Photodynamic therapy plus regulatory T-cell depletion produces immunity against a mouse tumour that expresses a self-antigen. Br J Cancer 109:2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meyer C, Sevko A, Ramacher M et al (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108:17111–17116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bode C, Zhao G, Steinhagen F et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teitz-Tennenbaum S, Li Q, Rynkiewicz S et al (2003) Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63:8466–8475

    CAS  PubMed  Google Scholar 

  27. Ahmed MM, Hodge JW, Guha C et al (2013) Harnessing the potential of radiation-induced immune modulation for cancer therapy. Cancer Immunol Res 1:280–284

    Article  CAS  PubMed  Google Scholar 

  28. Gorin JB, Ménager J, Gouard S et al (2014) Antitumor immunity induced after α irradiation. Neoplasia 16:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Casares N, Arribillaga L, Sarobe P et al (2003) CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol 171:5931–5939

    Article  CAS  PubMed  Google Scholar 

  30. Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261

    Article  CAS  PubMed  Google Scholar 

  31. Kusmartsev S, Cheng F, Yu B et al (2003) All- trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441–4449

    CAS  PubMed  Google Scholar 

  32. Iclozan C, Antonia S, Chiappori A et al (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalathil S, Lugade AA, Miller A et al (2013) Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 73:2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu J, Escamilla J, Mok S et al (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73:2782–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneider T, Sevko A, Heussel CP et al (2015) Serum inflammatory factors and circulating immunosuppressive cells are predictive markers for efficacy of radiofrequency ablation in non-small cell lung cancer. Clin Exp Immunol 180:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bos PD, Plitas G, Rudra D et al (2013) Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210(11):2435–2466

    Article  PubMed  PubMed Central  Google Scholar 

  37. Levy MY, Sidana A, Chowdhury WH et al (2009) Cyclophosphamide unmasks an antimetastatic effect of local tumor cryoablation. J Pharmacol Exp Ther 330(2):596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tongu M, Harashima N, Monma H et al (2013) Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother 62:383–391

    Article  CAS  PubMed  Google Scholar 

  39. Song X, Guo W, Cui J et al (2011) A tritherapy combination of a fusion protein vaccine with immune-modulating doses of sequential chemotherapies in an optimized regimen completely eradicates large tumors in mice. Int J Cancer 128(5):1129–1138

    Article  CAS  PubMed  Google Scholar 

  40. Chen X, Yang Y, Zhou Q et al (2014) Effective chemoimmunotherapy with anti-TGFβ antibody and cyclophosphamide in a mouse model of breast cancer. PLoS one 9:e85398

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dewan MZ, Vanpouille-Box C, Kawashima N et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18:6668–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paulos CM, Kaiser A, Wrzesinski C et al (2007) Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13:5280–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov 13:497–512

    Article  Google Scholar 

  44. Sgouros G, Song H (2008) Cancer stem cells targeting using the alpha-particle emitter, 213Bi: mathematical modeling and feasibility analysis. Cancer Biother Radioparm 23:74–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gideon Halpern for assistance with the statistical analysis and Kathrin Frank for technical assistance. This work was supported in part by Roberts–Guthman Chair in Immunopharmacology and The German-Israeli Foundation for Scientific Research and Development (GIF) (to Prof. Yona Keisari and Prof. Viktor Umansky). This work was performed in partial fulfillment of the requirements toward a Ph.D. degree of Hila Confino, Sackler Faculty of Medicine, Tel Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yona Keisari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Note on previous publications:

1. European Association for Cancer Research (EACR 23), Munich, Germany, July 5–8, 2014. Eur. J. Cancer, 2014, 50, Suppl 5, S213.

2. International Cong. Anti Cancer Res. Sithonia, Greece, Oct. 5–10, 2014. Anti Cancer Res. 2014, 34 (10), 5994–5.

3. Seventh International Conference on Tumor Microenvironment: Progression, Therapy and Prevention, Tel Aviv, Israel, Oct. 11–16, 2015. Cancer Microenvironment, 2015, 8, suppl. 1, S111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Confino, H., Schmidt, M., Efrati, M. et al. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG. Cancer Immunol Immunother 65, 1149–1158 (2016). https://doi.org/10.1007/s00262-016-1878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1878-6

Keywords

Navigation