Skip to main content

Advertisement

Log in

Overexpression of apolipoprotein A-I fused to an anti-transforming growth factor beta peptide modulates the tumorigenicity and immunogenicity of mouse colon cancer cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Transforming growth factor beta (TGF-β) promotes tumor growth, invasion and metastasis in established tumors. In this study, we analyzed the effect of overexpressing an anti-TGF-β peptide fused to apolipoprotein A-I (ApoA-I) as a scaffold molecule. We generated and characterized stable MC38 colon carcinoma clones expressing ApoA-I fused to the anti-TGF-β peptide P144 and ApoA-I as control cells. We evaluated in vitro the gene expression profile, cell cycle and anchorage-independent growth. The in vivo tumorigenic potential and immunogenicity were analyzed inoculating the MC38 clones into C57BL/6 mice, recombination-activating gene 1 knockout mice or mice deficient in NK cells either subcutaneously or intrasplenically to generate hepatic metastases. While overexpression of ApoA-I had no effect on the parameters analyzed, ApoA-I fused to P144 markedly diminished the tumorigenic capacity and metastatic potential of MC38 in vitro and in vivo, thus generating a highly immunogenic cell line. MC38 cells transfected with ApoA-I fused to P144 triggered memory T cell responses able to eliminate the parental cell line upon re-challenge. In summary, expression of ApoA-I fused to P144 is a novel strategy to modulate TGF-β in tumor cells. These results highlight the potential of TGF-β as a target in the development of new antitumor treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ApoA-I:

Apolipoprotein A-I

ApoLinkerP144:

Fusion protein of apolipoprotein A-I and P144

Cox2 :

Cyclooxygenase 2

FC:

Fold change

Foxo3a :

Forkhead box O3

HDL:

High-density lipoproteins

H3f3a :

Histone H3.3

MC38 Apo:

MC38 stable clones overexpressing apolipoprotein A-I

MC38 ApoLinkerP144:

MC38 stable clones overexpressing the fusion protein of apolipoprotein A-I and P144

Mmp2 :

Matrix metallopeptidase 2

Mmp9 :

Matrix metallopeptidase 9

Rag-1 :

Recombination-activating gene 1

SR-B1:

Scavenger receptor class B type I

Tlr4 :

Toll-like receptor 4

TGF-β:

Transforming growth factor beta

References

  1. Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10:554–567

    Article  CAS  PubMed  Google Scholar 

  3. Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160

    Article  CAS  PubMed  Google Scholar 

  5. Ivanovic V, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D (2003) Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 39:454–461

    Article  CAS  PubMed  Google Scholar 

  6. Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE (1998) Elevated plasma levels of transforming growth factor (TGF)-beta1 and TGF-beta2 in patients with disseminated malignant melanoma. Br J Cancer 77:1492–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Robson H, Anderson E, James RD, Schofield PF (1996) Transforming growth factor beta 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. Br J Cancer 74:753–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Medina-Echeverz J, Fioravanti J, Diaz-Valdes N, Frank K, Aranda F, Gomar C, Ardaiz N, Dotor J, Umansky V, Prieto J, Berraondo P (2014) Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases. PLoS ONE 9:e96799

    Article  PubMed Central  PubMed  Google Scholar 

  9. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520

    Article  CAS  PubMed  Google Scholar 

  10. Cao WM, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, Niimi M, Miyauchi A, Wong NC, Ishida T (2004) A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Res 64:1515–1521

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Voutilainen R, Heikkila P, Kahri AI (1997) Ribonucleic acid expression of the CLA-1 gene, a human homolog to mouse high density lipoprotein receptor SR-BI, in human adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab 82:2522–2527

    CAS  PubMed  Google Scholar 

  12. Jiang J, Nilsson-Ehle P, Xu N (2006) Influence of liver cancer on lipid and lipoprotein metabolism. Lipids Health Dis 5:4

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fioravanti J, Medina-Echeverz J, Berraondo P (2011) Scavenger receptor class B, type I: a promising immunotherapy target. Immunotherapy 3:395–406

    Article  CAS  PubMed  Google Scholar 

  14. Lacko AG, Nair M, Prokai L, McConathy WJ (2007) Prospects and challenges of the development of lipoprotein-based formulations for anti-cancer drugs. Expert Opin Drug Deliv 4:665–675

    Article  CAS  PubMed  Google Scholar 

  15. Lou B, Liao XL, Wu MP, Cheng PF, Yin CY, Fei Z (2005) High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells. World J Gastroenterol 11:954–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. McConathy WJ, Nair MP, Paranjape S, Mooberry L, Lacko AG (2008) Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs 19:183–188

    Article  CAS  PubMed  Google Scholar 

  17. Dotor J, Lopez-Vazquez AB, Lasarte JJ, Sarobe P, Garcia-Granero M, Riezu-Boj JI, Martinez A, Feijoo E, Lopez-Sagaseta J, Hermida J, Prieto J, Borras-Cuesta F (2007) Identification of peptide inhibitors of transforming growth factor beta 1 using a phage-displayed peptide library. Cytokine 39:106–115

    Article  CAS  PubMed  Google Scholar 

  18. Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortazar I, Bustos M, Penuelas I, Blanco G, Rodriguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borras-Cuesta F (2003) A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 22:12–20

    Article  CAS  PubMed  Google Scholar 

  19. Santiago B, Gutierrez-Canas I, Dotor J, Palao G, Lasarte JJ, Ruiz J, Prieto J, Borras-Cuesta F, Pablos JL (2005) Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol 125:450–455

    Article  CAS  PubMed  Google Scholar 

  20. Gil-Guerrero L, Dotor J, Huibregtse IL, Casares N, Lopez-Vazquez AB, Rudilla F et al (2008) In vitro and in vivo down-regulation of regulatory T cell activity with a peptide inhibitor of TGF-beta1. J Immunol 181:126–135

    Article  CAS  PubMed  Google Scholar 

  21. Llopiz D, Dotor J, Casares N, Bezunartea J, Diaz-Valdes N, Ruiz M, Aranda F, Berraondo P, Prieto J, Lasarte JJ, Borras-Cuesta F, Sarobe P (2009) Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy. Int J Cancer 125:2614–2623

    Article  CAS  PubMed  Google Scholar 

  22. Llopiz D, Dotor J, Zabaleta A, Lasarte JJ, Prieto J, Borras-Cuesta F, Sarobe P (2008) Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immunother 57:19–29

    Article  CAS  PubMed  Google Scholar 

  23. Fioravanti J, Gonzalez I, Medina-Echeverz J, Larrea E, Ardaiz N, Gonzalez-Aseguinolaza G, Prieto J, Berraondo P (2011) Anchoring interferon alpha to apolipoprotein A-I reduces hematological toxicity while enhancing immunostimulatory properties. Hepatology 53:1864–1873

    Article  CAS  PubMed  Google Scholar 

  24. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed Central  PubMed  Google Scholar 

  25. Blake JA, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D et al (2013) Gene Ontology annotations and resources. Nucleic Acids Res 41:D530–D535

    Article  CAS  PubMed  Google Scholar 

  26. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12:115–121

    Article  CAS  PubMed  Google Scholar 

  27. DiPaola RS (2002) To arrest or not to G(2)-M Cell-cycle arrest : commentary re: A. K. Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G(2)-M arrest, and apoptosis. Clin. cancer res., 8: 3512–3519, 2002. Clin Cancer Res 8:3311–3314

    CAS  PubMed  Google Scholar 

  28. Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, Catani JP, Freudenberg M, Galanos C, Andre F, Kroemer G, Zitvogel L (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274:13066–13076

    Article  CAS  PubMed  Google Scholar 

  30. Storz P, Doppler H, Copland JA, Simpson KJ, Toker A (2009) FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol Cell Biol 29:4906–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lee HY, Youn SW, Kim JY, Park KW, Hwang CI, Park WY, Oh BH, Park YB, Walsh K, Seo JS, Kim HS (2008) FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. Arterioscler Thromb Vasc Biol 28:112–120

    Article  CAS  PubMed  Google Scholar 

  32. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311

    CAS  PubMed  Google Scholar 

  33. Nemunaitis J, Barve M, Orr D, Kuhn J, Magee M, Lamont J et al (2014) Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG) in advanced cancer of the liver. Oncology 87:21–29

    Article  CAS  PubMed  Google Scholar 

  34. Liu P, Jaffar J, Zhou Y, Yang Y, Hellstrom I, Hellstrom KE (2009) Inhibition of TGFbeta1 makes nonimmunogenic tumor cells effective for therapeutic vaccination. J Immunother 32:232–239

    Article  CAS  PubMed  Google Scholar 

  35. Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M et al (2011) Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 13:309–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Paul Miller for English editing. This work was supported by the grant PI13/00207 from Instituto de Salud Carlos III, financed by the FEDER program of the European Union. Pedro Berraondo was supported by a Miguel Servet contract from Instituto de Salud Carlos III.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Berraondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Echeverz, J., Vasquez, M., Gomar, C. et al. Overexpression of apolipoprotein A-I fused to an anti-transforming growth factor beta peptide modulates the tumorigenicity and immunogenicity of mouse colon cancer cells. Cancer Immunol Immunother 64, 717–725 (2015). https://doi.org/10.1007/s00262-015-1681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1681-9

Keywords

Navigation