Skip to main content
Log in

Apolipoprotein C-III itself stimulates the Syk/cPLA2-induced inflammasome activation of macrophage to boost anti-tumor activity of CD8+ T cell

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Increased prevalence of cancer in obese individuals is involved with dyslipidemia- induced chronic inflammation and immune suppression. Although apolipoprotein C-III (ApoC3)-transgenic mice (ApoC3TG mice) or poloxamer 407 (P407)-treated mice had hyperlipidemia, CD8+ T cells with upregulated antitumor activities were observed in ApoC3TG mice, and decreased CD8+ T cell activities were observed in P407-treated mice. Increased ApoC3 expression in hepatocellular carcinoma was associated with increased infiltration of CD8+ T cells and predicted survival. Recombinant ApoC3 had no direct effects on CD8+ T cells. The upregulation of CD8+ T cells in ApoC3TG mice was due to cross-talk with context cells, as indicated by metabolic changes and RNA sequencing results. In contrast to dendritic cells, the macrophages of ApoC3TG mice (macrophagesTG) displayed an activated phenotype and increased IL-1β, TNF-α, and IL-6 production. Coculture with macrophagesTG increased CD8+ T cell function, and the adoptive transfer of macrophagesTG suppressed tumor progression in vivo. Furthermore, spleen tyrosine kinase (Syk) activation induced by TLR2/TLR4 cross-linking after ApoC3 ligation promoted cellular phospholipase A2 (cPLA2) activation, which in turn activated NADPH oxidase 2 (NOX2) to promote an alternative mode of inflammasome activation. Meanwhile, mitochondrial ROS produced by increased oxidative phosphorylation of free fatty acids facilitated the classical inflammasome activation, which exerted an auxiliary effect on inflammasome activation of macrophagesTG. Collectively, the increased antitumor activity of CD8+ T cells was mediated by the ApoC3-stimulated inflammasome activation of macrophages, and the mimetic ApoC3 peptides that can bind TLR2/4 could be a future strategy to target liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ApoC3:

Apolipoprotein C-III

Syk:

Spleen tyrosine kinase

cPLA2:

Cellular phospholipase A2

sPLA2:

Secreted PLA2

P407:

Poloxamer 407

HCC:

Hepatocellular carcinoma

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor α

IL-6:

Interleukin-6

TLR2:

Toll-like receptor 2

TLR4:

Toll-like receptor 4

NADPH:

Nicotinamide adenine dinucleotide phosphate

ROS:

Reactive oxygen species

cROS:

Cytoplasmic ROS

mROS:

Mitochondrial ROS

MetSs:

Metabolic syndromes

VLDL:

Very-low-density lipoprotein

HDL:

High-density lipoprotein

HTG:

Hypertriglyceridemia

DCs:

Dendritic cells

ApoC3TG :

ApoC3-transgenic

CD36−/− :

CD36 knockout

IHC:

Immunohistochemical

AJCC:

American joint committee on cancer

ATCC:

American tissue culture collection

CPT1α:

Carnitine palmitoyltransferase 1α

SREBP1/2:

Sterol regulatory element binding protein 1/2

CGI58:

Comparative gene identification-58

ATGL:

Adipose triglyceride lipase

PD-L1:

Programmed death-ligand 1

NKG2D:

Natural killer group 2D

KLRG1:

Killer-cell lectin like receptor G1

IFN-γ:

Interferon-γ

IL-10:

Interleukin-10

TGF-β:

Transforming growth factor-β

GlUT1:

Glucose receptor

HK II:

Hexokinase II

ACC1:

Acetyl-CoA carboxylase 1

p-ACC1:

Phospho-ACC1

mTOR:

Mammalian target of rapamycin

mTORC1:

MTOR complex 1

LKB1:

Liver kinase B1

AMPK:

AMP kinase

Akt:

Protein kinase B

PPARγ:

Peroxisome proliferators-activated receptor γ

FOXO1:

Forkhead box protein O1

NLRP3:

NOD-like receptor family pyrin domain containing 3

Cas1:

Caspase 1, cysteinyl aspartate specific proteinase 1

Cas8:

Cysteinyl aspartate specific proteinase 8

c-Cas1:

Cleaved caspase 1

c-Cac8:

Cleaved caspase 8

RIPK1:

Receptor-interacting protein kinase 1

GSDMD:

Gasdermin D

PI3K p110α:

Phosphatidylinositol 3-kinase p110α

NF-κB:

Nuclear transcription factor-κB

NOX2:

NADPH oxidase

CCDC109A:

Coiled-coil domain containing 109A

FITC:

Fluorescein isothiocyanate

PI:

Propidium iodide

CFSE:

5,6-Carboxyfluorescein diacetate, succinimidyl ester

DCFH-DA:

2,7-Dichlorodihydrofluorescein diacetate

PVDF:

Polyvinylidene fluoride

ECAR:

Extracellular acidification rate

OCR:

Oxygen consumption rate

LPS:

Lipopolysaccharide

LDH:

Lactate dehydrogenase

ANOVA:

Analysis of variance

FFAs:

Free fatty acids

TCGA:

The cancer genome atlas

TME:

Tumor microenvironment

OVA:

Ovalbumin

WT:

Wild type

PA:

Palmitic acid

NAC:

N-acetyl-L-cysteine

TRPM2:

Transient receptor potential cation channel

FA:

Flufenamic acid

FAO:

Fatty acid oxidation

DEGs:

Differentially expressed genes

KEGG:

KYOTO encyclopedia of genes and genomes

HY:

Hybrid mice, ApoC3TG-CD36± mice

References

  1. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabol Clin Exp 92:121–135. https://doi.org/10.1016/j.metabol.2018.11.001

    Article  CAS  Google Scholar 

  2. Bovolini A, Garcia J, Andrade MA, Duarte JA (2021) Metabolic syndrome pathophysiology and predisposing factors. Int J Sports Med 42:199–214. https://doi.org/10.1055/a-1263-0898

    Article  PubMed  Google Scholar 

  3. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320:C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

    Article  CAS  PubMed  Google Scholar 

  4. Kolb R, Sutterwala FS, Zhang W (2016) Obesity and cancer: inflammation bridges the two. Curr Opin Pharmacol 29:77–89. https://doi.org/10.1016/j.coph.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R (2021) Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers. https://doi.org/10.3390/cancers13236062

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang S, Gang X, Yang S, Cui M, Sun L, Li Z, Wang G (2021) The alterations in and the role of the Th17/Treg balance in metabolic diseases. Front Immunol 12:678355. https://doi.org/10.3389/fimmu.2021.678355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayashi T, Fujita K, Nojima S et al (2018) High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin Cancer Res 24:4309–4318. https://doi.org/10.1158/1078-0432.CCR-18-0106

    Article  CAS  PubMed  Google Scholar 

  8. Lennon H, Sperrin M, Badrick E, Renehan AG (2016) The obesity paradox in cancer: a review. Curr Oncol Rep 18:56. https://doi.org/10.1007/s11912-016-0539-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jabbar KJ, Yin CC, Bueso-Ramos CE, Luthra R, Medeiros LJ, Zuo Z (2018) Higher body mass index is associated with better survival in patients with myelodysplastic syndromes. Leuk Res 71:63–66. https://doi.org/10.1016/j.leukres.2018.07.008

    Article  PubMed  Google Scholar 

  10. Schmitz J, Gouni-Berthold I (2018) APOC-III antisense oligonucleotides: a new option for the treatment of hypertriglyceridemia. Curr Med Chem 25:1567–1576. https://doi.org/10.2174/0929867324666170609081612

    Article  CAS  PubMed  Google Scholar 

  11. Taskinen MR, Packard CJ, Boren J (2019) Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr Atheroscler Rep 21:27. https://doi.org/10.1007/s11883-019-0791-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khetarpal SA, Zeng X, Millar JS et al (2017) A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med 23:1086–1094. https://doi.org/10.1038/nm.4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qu S, Perdomo G, Su D, D’Souza FM, Shachter NS, Dong HH (2007) Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice. J Lipid Res 48:1476–1487. https://doi.org/10.1194/jlr.M600498-JLR200

    Article  CAS  PubMed  Google Scholar 

  14. Zha Y, Lu Y, Zhang T, Yan K, Zhuang W, Liang J, Cheng Y, Wang Y (2021) CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits. Lipids Health Dis 20:180. https://doi.org/10.1186/s12944-021-01605-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alborn WE, Prince MJ, Konrad RJ (2007) Relationship of apolipoprotein A5 and apolipoprotein C3 levels to serum triglycerides in patients with type 2 diabetes. Clin Chim Acta Int J Clin Chem 378:154–158. https://doi.org/10.1016/j.cca.2006.11.009

    Article  CAS  Google Scholar 

  16. Zhang Y, He W, He C et al (2019) Large triglyceride-rich lipoproteins in hypertriglyceridemia are associated with the severity of acute pancreatitis in experimental mice. Cell Death Dis 10:728. https://doi.org/10.1038/s41419-019-1969-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong M, Wang F (2020) APOC3rs2854116, PNPLA3rs738409, and TM6SF2rs58542926 polymorphisms might influence predisposition of NAFLD: a meta-analysis. IUBMB Life 72:1757–1764. https://doi.org/10.1002/iub.2302

    Article  CAS  PubMed  Google Scholar 

  18. Pollex RL, Ban MR, Young TK et al (2007) Association between the -455T>C promoter polymorphism of the APOC3 gene and the metabolic syndrome in a multi-ethnic sample. BMC Med Genet 8:80. https://doi.org/10.1186/1471-2350-8-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller M, Rhyne J, Chen H, Beach V, Ericson R, Luthra K, Dwivedi M, Misra A (2007) APOC3 promoter polymorphisms C-482T and T-455C are associated with the metabolic syndrome. Arch Med Res 38:444–451. https://doi.org/10.1016/j.arcmed.2006.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen W, Zhang F, Xu H, Hou X, Tang D, Dai Y (2022) Identification and characterization of genes related to the prognosis of hepatocellular carcinoma based on single-cell sequencing. Pathol Oncol Res POR 28:1610199. https://doi.org/10.3389/pore.2022.1610199

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Wang L, Wang L, Feng Z, Peng C (2021) Single-cell sequencing of hepatocellular carcinoma reveals cell interactions and cell heterogeneity in the microenvironment. Int J Gen Med 14:10141–10153. https://doi.org/10.2147/IJGM.S338090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu X, Jia X, Xu C, Wei Y, Wang Z, Liu G, You Q, Lu G, Gong W (2021) Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metab Clin Exp 120:154800. https://doi.org/10.1016/j.metabol.2021.154800

    Article  CAS  PubMed  Google Scholar 

  23. Zhou S, Tu J, Ding S et al (2020) High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T cells and M2 macrophages. Pathol Oncol Res POR 26:1269–1278. https://doi.org/10.1007/s12253-019-00695-0

    Article  CAS  PubMed  Google Scholar 

  24. Liu YZ, Cheng X, Zhang T et al (2016) Effect of hypertriglyceridemia on beta cell mass and function in ApoC3 transgenic mice. J Biol Chem 291:14695–14705. https://doi.org/10.1074/jbc.M115.707885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan Y, Li Y, Gao L et al (2017) Development of a novel model of hypertriglyceridemic acute pancreatitis in mice. Sci Rep 7:40799. https://doi.org/10.1038/srep40799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mossmann D, Park S, Hall MN (2018) mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 18:744–757. https://doi.org/10.1038/s41568-018-0074-8

    Article  CAS  PubMed  Google Scholar 

  27. Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC (2018) The regulation of FOXO1 and its role in disease progression. Life Sci 193:124–131. https://doi.org/10.1016/j.lfs.2017.11.030

    Article  CAS  PubMed  Google Scholar 

  28. Zewinger S, Reiser J, Jankowski V et al (2020) Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol 21:30–41. https://doi.org/10.1038/s41590-019-0548-1

    Article  CAS  PubMed  Google Scholar 

  29. Vazquez-Medina JP, Dodia C, Weng L, Mesaros C, Blair IA, Feinstein SI, Chatterjee S, Fisher AB (2016) The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J Off Publ Fed Am Soc Exp Biol 30:2885–2898. https://doi.org/10.1096/fj.201500146R

    Article  CAS  Google Scholar 

  30. Lin YC, Huang DY, Chu CL, Lin YL, Lin WW (2013) The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 6:ra71. https://doi.org/10.1126/scisignal.2003973

    Article  CAS  PubMed  Google Scholar 

  31. Means TK, Golenbock DT, Fenton MJ (2000) Structure and function of Toll-like receptor proteins. Life Sci 68:241–258. https://doi.org/10.1016/s0024-3205(00)00939-5

    Article  CAS  PubMed  Google Scholar 

  32. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082. https://doi.org/10.1016/j.cell.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  33. Kim HM, Park BS, Kim JI et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917. https://doi.org/10.1016/j.cell.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  34. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22:550–559. https://doi.org/10.1038/s41590-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song Y, Zhu L, Richa M, Li P, Yang Y, Li S (2015) Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels: a meta-analysis. Lipids Health Dis 14:32. https://doi.org/10.1186/s12944-015-0027-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. George Liu and Prof. Qiang You for providing ApoC3TG mice and CD36−/− mice respectively.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81873867, 81671547, and 81873866), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20161339, and BK20160479); the “Six peaks” Talent Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

XJ conceived the study. WG, GL, XH, XJ and ZW designed the experiments. XH, ZL, LL, and SD conducted the experiments. WX, YD, and YZ collected biopsies of HCC. WG, GL, XH and XJ analyzed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaoqin Jia.

Ethics declarations

Conflict of interest

There are no financial conflicts of interest with regard to this work.

Ethics approval and consent to participate

The study protocol was approved by the ethics committee of the Affiliated Hospital of Yangzhou University and obtained informed consent from all the patients. All animal protocols were approved by the Institutional Animal Care and Use Committee of Yangzhou University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59368 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ding, S., Lu, G. et al. Apolipoprotein C-III itself stimulates the Syk/cPLA2-induced inflammasome activation of macrophage to boost anti-tumor activity of CD8+ T cell. Cancer Immunol Immunother 72, 4123–4144 (2023). https://doi.org/10.1007/s00262-023-03547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03547-8

Keywords

Navigation