Skip to main content
Log in

Cross-sectional imaging of the pancreas in diabetes

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Diabetes mellitus presents a global health challenge characterized by dysregulated glucose metabolism and insulin resistance. Pancreas dysfunction contributes to the development and progression of diabetes. Cross-sectional imaging modalities have provided new insight into the structural and functional alterations of the pancreas in individuals with diabetes. This review summarizes MRI and CT studies that characterize pancreas alterations in both type 1 and type 2 diabetes and discusses future applications of these techniques.

Key points

  • Cross-sectional imaging can detect alterations to the pancreas accompanying, and possibly presaging, the development of both type 1 diabetes (T1D) and type 2 diabetes (T2D).

  • The smaller pancreas found in individuals with diabetes implicates exocrine involvement in the disease, as it exceeds the 1–2% of the pancreas composed of hormone-producing endocrine tissue.

  • Pancreas fat content is associated with insulin resistance and is higher in individuals with T2D.

  • Quantitative MRI can detect changes in pancreas composition and microstructure in individuals with diabetes that display spatial heterogeneity throughout the gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 1. Hudak, S., et al., Reproducibility and discrimination of different indices of insulin sensitivity and insulin secretion. PLoS One, 2021. 16(10): p. e0258476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McCulloch, D.K., et al., Correlations of in vivo beta-cell function tests with beta-cell mass and pancreatic insulin content in streptozocin-administered baboons. Diabetes, 1991. 40(6): p. 673–9.

    Article  CAS  PubMed  Google Scholar 

  3. Robertson, R.P., Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes, 2007. 56(10): p. 2420–4.

    Article  CAS  PubMed  Google Scholar 

  4. Bonner-Weir, S., D.F. Trent, and G.C. Weir, Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest, 1983. 71(6): p. 1544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larsen, M.O., et al., Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic beta-cell mass in vivo in the nicotinamide/streptozotocin Gottingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes, 2003. 52(1): p. 118 − 23.

    Article  CAS  PubMed  Google Scholar 

  6. Saito, K., N. Yaginuma, and T. Takahashi, Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med, 1979. 129(3): p. 273 − 83.

    Article  CAS  PubMed  Google Scholar 

  7. Andralojc, K., et al., Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia, 2012. 55(5): p. 1247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Gialleonardo, V., et al., Imaging of beta-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus. Endocr Rev, 2012. 33(6): p. 892–919.

    Article  PubMed  Google Scholar 

  9. Malaisse, W.J. and K. Maedler, Imaging of the beta-cells of the islets of Langerhans. Diabetes Res Clin Pract, 2012. 98(1): p. 11 − 8.

    Article  CAS  PubMed  Google Scholar 

  10. Gepts, W., Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes, 1965. 14(10): p. 619 − 33.

    Article  CAS  PubMed  Google Scholar 

  11. Migdalis, I.N., et al., Size of the pancreas in non-insulin-dependent diabetic patients. J Med, 1991. 22(3): p. 179 − 86.

    CAS  PubMed  Google Scholar 

  12. Garcia, T.S., T.H. Rech, and C.B. Leitao, Pancreatic size and fat content in diabetes: A systematic review and meta-analysis of imaging studies. PLoS One, 2017. 12(7): p. e0180911.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, Y., et al., Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. Elife, 2021. 10.

  14. Wright, J.J., et al., Decreased pancreatic acinar cell number in type 1 diabetes. Diabetologia, 2020. 63(7): p. 1418–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusmartseva, I., et al., Temporal Analysis of Amylase Expression in Control, Autoantibody-Positive, and Type 1 Diabetes Pancreatic Tissues. Diabetes, 2020.

    Article  CAS  PubMed  Google Scholar 

  16. Apaolaza, P.S., et al., The extent and magnitude of islet T cell infiltration as powerful tools to define the progression to type 1 diabetes. Diabetologia, 2023.

  17. Sasamori, H., et al., Analysis of pancreatic volume in acute-onset, slowly-progressive and fulminant type 1 diabetes in a Japanese population. J Diabetes Investig, 2018.

  18. Williams, A.J., et al., Pancreatic Volume Is Reduced in Adult Patients with Recently Diagnosed Type 1 Diabetes. J Clin Endocrinol Metab, 2012. 97(11):E2109–13.

    Article  PubMed  Google Scholar 

  19. Campbell-Thompson, M.L., et al., The influence of type 1 diabetes on pancreatic weight. Diabetologia, 2016. 59(1): p. 217 − 21.

    Article  PubMed  Google Scholar 

  20. Campbell-Thompson, M.L., et al., Relative Pancreas Volume Is Reduced in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care, 2019. 42(2): p. 281–287.

    Article  CAS  PubMed  Google Scholar 

  21. Virostko, J., et al., Pancreas Volume Declines During the First Year After Diagnosis of Type 1 Diabetes and Exhibits Altered Diffusion at Disease Onset. Diabetes Care, 2019. 42(2): p. 248–257.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Q., et al., Distribution and correlation of pancreatic gland size and duct diameters on MRCP in patients without evidence of pancreatic disease. Abdom Radiol (NY), 2019. 44(3): p. 967–975.

    Article  PubMed  Google Scholar 

  23. Saisho, Y., et al., Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat, 2007. 20(8): p. 933 − 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wright, J.J., et al., Longitudinal MRI Shows Progressive Decline in Pancreas Size and Altered Pancreas Shape in Type 1 Diabetes. J Clin Endocrinol Metab, 2023.

  25. Virostko, J., et al., Longitudinal Assessment of Pancreas Volume by MRI Predicts Progression to Stage 3 Type 1 Diabetes. Diabetes Care, 2024. 47(3): p. 393–400.

    Article  PubMed  Google Scholar 

  26. Al-Mrabeh, A., et al., 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol, 2020. 8(12): p. 939–948.

    Article  CAS  PubMed  Google Scholar 

  27. Young, M.C., et al., Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant. Pancreas, 2016. 45(7): p. 961–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nanno, Y., et al., Combination of pancreas volume and HbA1c level predicts islet yield in patients undergoing total pancreatectomy and islet autotransplantation. Clin Transplant, 2020. 34(8): p. e14008.

    Article  CAS  PubMed  Google Scholar 

  29. Wright, J.J., et al., Insulin Deficiency From Insulin Gene Mutation Leads to Smaller Pancreas Diabetes Care, 2023.

  30. Williams, J.M., et al., Repeatability and Reproducibility of Pancreas Volume Measurements Using MRI. Sci Rep, 2020. 10(1): p. 4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams, A.J., et al., Magnetic resonance imaging: a reliable method for measuring pancreatic volume in Type 1 diabetes. Diabet Med, 2007. 24(1): p. 35–40.

    Article  CAS  PubMed  Google Scholar 

  32. Miura, S., et al., Focal Parenchymal Atrophy of the Pancreas Is Frequently Observed on Pre-Diagnostic Computed Tomography in Patients with Pancreatic Cancer: A Case-Control Study. Diagnostics (Basel), 2021. 11(9).

  33. Macauley, M., et al., Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS One, 2015. 10(5): p. e0126825.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lingvay, I., et al., Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab, 2009. 94(10): p. 4070–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, S.Y., et al., Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology, 2014. 271(1): p. 104–12.

    Article  PubMed  Google Scholar 

  36. Catanzaro, R., et al., Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J Gastroenterol, 2016. 22(34): p. 7660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh, R.G., et al., Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism, 2017. 69: p. 1–13.

    Article  CAS  PubMed  Google Scholar 

  38. Ou, H.Y., et al., The association between nonalcoholic fatty pancreas disease and diabetes. PLoS One, 2013. 8(5): p. e62561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Regnell, S.E., et al., Pancreas volume and fat fraction in children with Type 1 diabetes. Diabet Med, 2016. 33(10): p. 1374–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tirkes, T., et al., Association of Pancreatic Steatosis With Chronic Pancreatitis, Obesity, and Type 2 Diabetes Mellitus. Pancreas, 2019. 48(3): p. 420–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heber, S.D., et al., Pancreatic fat content by magnetic resonance imaging in subjects with prediabetes, diabetes, and controls from a general population without cardiovascular disease. PLoS One, 2017. 12(5): p. e0177154.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nadarajah, C., et al., Association of pancreatic fat content with type II diabetes mellitus. Clin Radiol, 2020. 75(1): p. 51–56.

    Article  CAS  PubMed  Google Scholar 

  43. Yamazaki, H., et al., Fat Distribution Patterns and Future Type 2 Diabetes. Diabetes, 2022. 71(9): p. 1937–1945.

    Article  CAS  PubMed  Google Scholar 

  44. Lim, S., et al., Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol, 2014. 51(5): p. 739–48.

    Article  PubMed  Google Scholar 

  45. Lim, E.L., et al., Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia, 2011. 54(10): p. 2506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heni, M., et al., Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev, 2010. 26(3): p. 200–5.

    Article  CAS  PubMed  Google Scholar 

  47. Tushuizen, M.E., et al., Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care, 2007. 30(11): p. 2916–21.

    Article  CAS  PubMed  Google Scholar 

  48. Rebours, V., et al., Obesity and Fatty Pancreatic Infiltration Are Risk Factors for Pancreatic Precancerous Lesions (PanIN). Clin Cancer Res, 2015. 21(15): p. 3522–8.

    Article  CAS  PubMed  Google Scholar 

  49. Schwenzer, N.F., et al., Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest Radiol, 2008. 43(5): p. 330–7.

    Article  PubMed  Google Scholar 

  50. Yao, W.J., et al., Pancreas fat quantification with quantitative CT: an MRI correlation analysis Clin Radiol, 2020. 75(5): p. 397 e1-397 e6.

  51. Winston, C.B., et al., Pancreatic signal intensity on T1-weighted fat saturation MR images: clinical correlation. J Magn Reson Imaging, 1995. 5(3): p. 267–71.

    Article  CAS  PubMed  Google Scholar 

  52. Piciucchi, M., et al., Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment Int J Endocrinol, 2015. 2015: p. 595649.

  53. Balci, N.C., et al., Suspected chronic pancreatitis with normal MRCP: findings on MRI in correlation with secretin MRCP. J Magn Reson Imaging, 2008. 27(1): p. 125–31.

    Article  PubMed  Google Scholar 

  54. Watanabe, H., et al., Fibrosis and postoperative fistula of the pancreas: correlation with MR imaging findings–preliminary results. Radiology, 2014. 270(3): p. 791–9.

    Article  PubMed  Google Scholar 

  55. Trikudanathan, G., et al., Diagnostic Performance of Contrast-Enhanced MRI With Secretin-Stimulated MRCP for Non-Calcific Chronic Pancreatitis: A Comparison With Histopathology. Am J Gastroenterol, 2015. 110(11): p. 1598–606.

    Article  CAS  PubMed  Google Scholar 

  56. Tirkes, T., et al., Detection of exocrine dysfunction by MRI in patients with early chronic pancreatitis. Abdom Radiol (NY), 2017. 42(2): p. 544–551.

    Article  PubMed  Google Scholar 

  57. Tirkes, T., et al., Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver. MAGMA, 2019. 32(5): p. 559–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tirkes, T., et al., T1 mapping for diagnosis of mild chronic pancreatitis. J Magn Reson Imaging, 2017. 45(4): p. 1171–1176.

    Article  PubMed  Google Scholar 

  59. Tirkes, T., et al., Normal T1 relaxometry and extracellular volume of the pancreas in subjects with no pancreas disease: correlation with age and gender. Abdom Radiol (NY), 2019. 44(9): p. 3133–3138.

    Article  PubMed  Google Scholar 

  60. Noda, Y., et al., Correlation of quantitative pancreatic T1 value and HbA1c value in subjects with normal and impaired glucose tolerance. J Magn Reson Imaging, 2019. 49(3): p. 711–718.

    Article  PubMed  Google Scholar 

  61. Tirkes, T., et al., Quantitative MR Evaluation of Chronic Pancreatitis: Extracellular Volume Fraction and MR Relaxometry. AJR Am J Roentgenol, 2018. 210(3): p. 533–542.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Westermark, P., A. Andersson, and G.T. Westermark, Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev, 2011. 91(3): p. 795–826.

    Article  CAS  PubMed  Google Scholar 

  63. Guardado-Mendoza, R., et al., Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Westermark, P., Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Pathol Pathol Anat, 1973. 359(1): p. 1–18.

    Article  CAS  PubMed  Google Scholar 

  65. Xin, A., et al., Pancreas Atrophy and Islet Amyloid Deposition in Patients With Elderly-Onset Type 2 Diabetes. J Clin Endocrinol Metab, 2017. 102(9): p. 3162–3171.

    Article  PubMed  Google Scholar 

  66. Noda, Y., et al., Pancreatic extracellular volume fraction using T1 mapping in patients with impaired glucose intolerance Abdom Radiol (NY), 2020.

  67. Fattahi, R., et al., Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging, 2009. 29(2): p. 350–6.

    Article  PubMed  Google Scholar 

  68. Tokunaga, A., et al., Diffusion-weighted magnetic resonance imaging in the pancreas of fulminant type 1 diabetes. Diabetol Int, 2018. 9(4): p. 257–265.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Noda, Y., et al., Diffusion kurtosis imaging of the pancreas for the assessment of HbA1c levels. J Magn Reson Imaging, 2016. 43(1): p. 159–65.

    Article  PubMed  Google Scholar 

  70. Jansson, L., et al., Pancreatic islet blood flow and its measurement. Ups J Med Sci, 2016. 121(2): p. 81–95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nyman, L.R., et al., Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo. Am J Physiol Endocrinol Metab, 2010. 298(4): p. E807-14.

    Article  PubMed  Google Scholar 

  72. Jansson, L. and C. Hellerstrom, Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia, 1983. 25(1): p. 45–50.

    Article  CAS  PubMed  Google Scholar 

  73. Carlbom, L., et al., Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes. Diabetologia, 2016. 59(9): p. 1968–72.

    Article  CAS  PubMed  Google Scholar 

  74. Eriksson, O., et al., Positron emission tomography ligand [11 C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes, 2014. 63(10): p. 3428–37.

    Article  CAS  PubMed  Google Scholar 

  75. Hirshberg, B., et al., Pancreatic perfusion of healthy individuals and type 1 diabetic patients as assessed by magnetic resonance perfusion imaging. Diabetologia, 2009. 52(8): p. 1561–5.

    Article  CAS  PubMed  Google Scholar 

  76. Taso, M., et al., Pancreatic perfusion modulation following glucose stimulation assessed by noninvasive arterial spin labeling (ASL) MRI. J Magn Reson Imaging, 2020. 51(3): p. 854–860.

    Article  PubMed  Google Scholar 

  77. Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168(2): p. 497–505.

    Article  PubMed  Google Scholar 

  78. Espes, D., et al., Pancreatic perfusion and its response to glucose as measured by simultaneous PET/MRI. Acta Diabetol, 2019. 56(10): p. 1113–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, C.W., et al., Correlation between pancreatic microcirculation and type 2 diabetes in patients with coronary artery disease: dynamic contrast-enhanced MR imaging. Radiology, 2009. 252(3): p. 704–11.

    Article  PubMed  Google Scholar 

  80. Kolipaka, A., et al., Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age. Magn Reson Imaging, 2017. 42: p. 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Serai, S.D., M. Abu-El-Haija, and A.T. Trout, 3D MR elastography of the pancreas in children. Abdom Radiol (NY), 2019. 44(5): p. 1834–1840.

    Article  PubMed  Google Scholar 

  82. Xu, Y., et al., Normative Pancreatic Stiffness Levels and Related Influences Established by Magnetic Resonance Elastography in Volunteers. J Magn Reson Imaging, 2020. 52(2): p. 448–458.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shi, Y., et al., Pancreatic Stiffness Quantified with MR Elastography: Relationship to Postoperative Pancreatic Fistula after Pancreaticoenteric Anastomosis. Radiology, 2018. 288(2): p. 476–484.

    Article  PubMed  Google Scholar 

  84. Ji, R., et al., Pancreatic stiffness response to an oral glucose load in obese adults measured by magnetic resonance elastography. Magn Reson Imaging, 2018. 51: p. 113–119.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wittingen, J. and C.F. Frey, Islet concentration in the head, body, tail and uncinate process of the pancreas. Ann Surg, 1974. 179(4): p. 412–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Willcox, A., et al., Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol, 2009. 155(2): p. 173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bell, E.T., Hyalinization of the islets of Langerhans in nondiabetic individuals. Am J Pathol, 1959. 35(4): p. 801–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Clark, A., et al., Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res, 1988. 9(4): p. 151–9.

    CAS  PubMed  Google Scholar 

  89. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563–77.

    Article  PubMed  Google Scholar 

  90. Aylward, A., et al., Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum Mol Genet, 2018.

  91. Tamaroff, J., et al., Overview of Atypical Diabetes. Endocrinol Metab Clin North Am, 2020. 49(4): p. 695–723.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the Beatson Foundation (2021-003), National Institute of Diabetes and Digestive and Kidney Diseases (DK129979, DK097771, DK108323, DK127382), and the National Cancer Institute (CA260955). Funding was provided via the NIDDK Information Network New Investigator Pilot Program in Bioinformatics. We gratefully acknowledge contributions from the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC) and Imaging Morphology of Pancreas in Diabetic Patients following Acute Pancreatitis (IMMINENT) Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Virostko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virostko, J., Tirkes, T. Cross-sectional imaging of the pancreas in diabetes. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04310-y

Keywords

Navigation