Skip to main content
Log in

Estimation of renal function using iodine maps in dual-energy spectral computed tomography urography: a feasibility and accuracy study

  • Technical
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To explore the feasibility of measuring glomerular filtration rate (GFR) using iodine maps in dual-energy spectral computed tomography urography (DEsCTU) and correlate them with the estimated GFR (eGFR) based on the equation of creatinine-cystatin C.

Materials and methods

One hundred and twenty-eight patients referred for DEsCTU were retrospectively enrolled. The DEsCTU protocol included non-contrast, nephrographic, and excretory phase imaging. The CT-derived GFR was calculated using the above 3-phase iodine maps (CT-GFRiodine) and 120 kVp-like images (CT-GFR120kvp) separately. CT-GFRiodine and CT-GFR120kvp were compared with eGFR using paired t-test, correlation analysis, and Bland–Altman plots. The receiver operating characteristic curves were used to test the renal function diagnostic performance with CT-GFR120kvp and CT-GFRiodine.

Results

The difference between eGFR (89.91 ± 18.45 ml·min−1·1.73 m−2) as reference standard and CT-GFRiodine (90.06 ± 20.89 ml·min−1·1.73 m−2) was not statistically significant, showing excellent correlation (r = 0.88, P < 0.001) and agreement (± 19.75 ml·min−1·1.73 m−2, P = 0.866). The correlation between eGFR and CT-GFR120kvp (66.13 ± 19.18 ml·min−1·1.73 m−2) was poor (r = 0.36, P < 0.001), and the agreement was poor (± 40.65 ml·min−1·1.73 m−2, P < 0.001). There were 62 patients with normal renal function and 66 patients with decreased renal function based on eGFR. The CT-GFRiodine had the largest area under the curve (AUC) for distinguishing between normal and decreased renal function (AUC = 0.951).

Conclusion

The GFR can be calculated accurately using iodine maps in DEsCTU. DEsCTU could be a non-invasive and reliable one-stop-shop imaging technique for evaluating both the urinary tract morphology and renal function.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GFR:

Glomerular filtration rate

eGFR:

Estimated glomerular filtration rate

CTU:

Computed tomography urography

CM:

Contrast material

DECT:

Dual-energy computed tomography

DEsCTU:

Dual-energy spectral computed tomography urography

HU:

Hounsfield unit

Scr:

Serum creatinine

Cys C:

Cystatin C

Hct:

Hematocrit

VMI:

Virtual monochromatic images

ASIR-V:

Adaptive statistical iterative reconstruction-V

IC:

Iodine concentration

CMF:

Contrast material filtration

PC:

Plasma concentration

References

  1. .Antonelli, A., et al., Elective partial nephrectomy is equivalent to radical nephrectomy in patients with clinical T1 renal cell carcinoma: results of a retrospective, comparative, multi-institutional study. BJU International, 2012. 109(7): p. 1013-1018. https://doi.org/https://doi.org/10.1111/j.1464-410X.2011.10431.x

    Article  PubMed  Google Scholar 

  2. .Campos, T.J.F.L., F.E. de V. Filho and M.F.H. Rocha, Assessment of the complexity of renal tumors by nephrometry (R.E.N.A.L. score) with CT and MRI images versus 3D reconstruction model images. International braz j urol, 2021. 47(4): p. 896-901. https://doi.org/https://doi.org/10.1590/S1677-5538.IBJU.2020.0930

    Article  Google Scholar 

  3. .Jeong, S., et al., Estimation of renal function using kidney dynamic contrast material-enhanced CT perfusion: accuracy and feasibility. Abdominal Radiology, 2021. 46(5): p. 2045-2051. https://doi.org/https://doi.org/10.1007/s00261-020-02826-7

    Article  PubMed  Google Scholar 

  4. .Choi, J.D., et al., Renal Damage Caused by Warm Ischaemia During Laparoscopic and Robot-Assisted Partial Nephrectomy: An Assessment Using Tc 99m-DTPA Glomerular Filtration Rate. European Urology, 2010. 58(6): p. 900-905. https://doi.org/https://doi.org/10.1016/j.eururo.2010.08.044

    Article  PubMed  Google Scholar 

  5. .Wang, J., et al., The new Asian modified CKD-EPI equation leads to more accurate GFR estimation in Chinese patients with CKD. International urology and nephrology, 2016. 48(12): p. 2077-2081. https://doi.org/https://doi.org/10.1007/s11255-016-1386-9

    Article  PubMed  Google Scholar 

  6. .Noorbakhsh, A., et al., What a difference a delay makes! CT urogram: a pictorial essay. Abdominal Radiology, 2019. 44(12): p. 3919-3934. https://doi.org/https://doi.org/10.1007/s00261-019-02086-0

    Article  PubMed  Google Scholar 

  7. .You, S., et al., Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method. European Radiology, 2018. 28(3): p. 1077-1084. https://doi.org/https://doi.org/10.1007/s00330-017-5061-z

    Article  MathSciNet  PubMed  Google Scholar 

  8. .Yuan, X., et al., Determination of Glomerular Filtration Rate with CT Measurement of Renal Clearance of Iodinated Contrast Material versus99m Tc-DTPA Dynamic Imaging “Gates” Method: A Validation Study in Asymmetrical Renal Disease. Radiology, 2017. 282(2): p. 552-560. https://doi.org/https://doi.org/10.1148/radiol.2016160425

    Article  PubMed  Google Scholar 

  9. .Becker, J., J. Babb and M. Serrano, Glomerular Filtration Rate in Evaluation of the Effect of Iodinated Contrast Media on Renal Function. American Journal of Roentgenology, 2013. 200(4): p. 822-826. https://doi.org/https://doi.org/10.2214/AJR.12.8871

    Article  PubMed  Google Scholar 

  10. .Hackstein, N., et al., Measuring Single-Kidney Glomerular Filtration Rate on Single-Detector Helical CT Using a Two-Point Patlak Plot Technique in Patients with Increased Interstitial Space. American Journal of Roentgenology, 2003. 181(1): p. 147-156. https://doi.org/https://doi.org/10.2214/ajr.181.1.1810147

    Article  PubMed  Google Scholar 

  11. .Zegadło, A., et al., Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. Journal of Clinical Medicine, 2020. 9(8): p. 2514. https://doi.org/https://doi.org/10.3390/jcm9082514

    Article  PubMed  PubMed Central  Google Scholar 

  12. .Gutjahr, R., et al., Quantitative dual-energy CT material decomposition of holmium microspheres: local concentration determination evaluated in phantoms and a rabbit tumor model. European Radiology, 2021. 31(1): p. 139-148. https://doi.org/https://doi.org/10.1007/s00330-020-07092-1

    Article  PubMed  Google Scholar 

  13. .Mahmood, U., et al., Rapid switching kVp dual energy CT: Value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. European Journal of Radiology, 2018. 102: p. 102-108. https://doi.org/https://doi.org/10.1016/j.ejrad.2018.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  14. .Zhang, X., et al., Utilisation of virtual non-contrast images and virtual mono-energetic images acquired from dual-layer spectral CT for renal cell carcinoma: image quality and radiation dose. Insights into Imaging, 2022. 13(1). https://doi.org/https://doi.org/10.1186/s13244-021-01146-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. .Marcon, J., et al., Papillary vs clear cell renal cell carcinoma. Differentiation and grading by iodine concentration using DECT—correlation with microvascular density. European Radiology, 2020. 30(1): p. 1-10. https://doi.org/https://doi.org/10.1007/s00330-019-06298-2

    Article  PubMed  CAS  Google Scholar 

  16. .L’Hostis, F., et al., Detection and Characterization of Atypical Renal Cysts and Solid Renal Masses in Kidney Transplant Patients by Use of Dual-Energy CT Iodine Maps. American Journal of Roentgenology, 2019. 213(1): p. 115-122. https://doi.org/https://doi.org/10.2214/AJR.18.20574

    Article  PubMed  Google Scholar 

  17. .Achille, M., et al., Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR. American journal of roentgenology, 2014. 202(5). https://doi.org/https://doi.org/10.2214/AJR.13.11450

    Article  Google Scholar 

  18. .Inker, L.A., et al., Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C. New England Journal of Medicine, 2012. 367(1): p. 20-29. https://doi.org/https://doi.org/10.1056/NEJMoa1114248

    Article  PubMed  CAS  Google Scholar 

  19. .Levey, A.S., et al., The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney International, 2011. 80(1): p. 17-28. https://doi.org/https://doi.org/10.1038/ki.2010.483

    Article  PubMed  Google Scholar 

  20. .Cheng, K., et al., CT urography: how to optimize the technique. Abdominal Radiology, 2019. 44(12): p. 3786-3799. https://doi.org/https://doi.org/10.1007/s00261-019-02111-2

    Article  PubMed  Google Scholar 

  21. .Park, J.J., B.K. Park and C.K. Kim, Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria. European Radiology, 2016. 26(10): p. 3550-3557. https://doi.org/https://doi.org/10.1007/s00330-016-4206-9

    Article  PubMed  Google Scholar 

  22. .Meeusen, J.W., et al., Performance of Cystatin C– and Creatinine-Based Estimated Glomerular Filtration Rate Equations Depends on Patient Characteristics. Clinical Chemistry, 2015. 61(10): p. 1265-1272. https://doi.org/https://doi.org/10.1373/clinchem.2015.243030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. .Stevens, P.E., Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Annals of Internal Medicine, 2013. 158(11): p. 825. https://doi.org/https://doi.org/10.7326/0003-4819-158-11-201306040-00007

    Article  PubMed  Google Scholar 

  24. .Lin, Z., et al., Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network. European Radiology, 2021. 31(7): p. 5021-5031. https://doi.org/https://doi.org/10.1007/s00330-020-07608-9

    Article  PubMed  Google Scholar 

  25. .Kwon, S.H., et al., Determination of Single-Kidney Glomerular Filtration Rate in Human Subjects by Using CT. Radiology, 2015. 276(2): p. 490-498. https://doi.org/https://doi.org/10.1148/radiol.2015141892

    Article  PubMed  Google Scholar 

  26. .Jiang, K., et al., A modified two-compartment model for measurement of renal function using dynamic contrast-enhanced computed tomography. PLoS One, 2019. 14(7): p. e0219605. https://doi.org/https://doi.org/10.1371/journal.pone.0219605

    Article  MathSciNet  PubMed  PubMed Central  CAS  Google Scholar 

  27. .Wang, T., et al., Measurement of Glomerular Filtration Rate Using Multiphasic Computed Tomography in Patients With Unilateral Renal Tumors: A Feasibility Study. Frontiers in Physiology, 2019. 10. https://doi.org/https://doi.org/10.3389/fphys.2019.01209

    Article  PubMed  PubMed Central  Google Scholar 

  28. .Ferguson, C.M., et al., Renal Adiposity Does not Preclude Quantitative Assessment of Renal Function Using Dual-Energy Multidetector CT in Mildly Obese Human Subjects. Academic Radiology, 2019. 26(11): p. 1488-1494. https://doi.org/https://doi.org/10.1016/j.acra.2018.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  29. .Harsaker, V., et al., Quantitative benchmarking of iodine imaging for two CT spectral imaging technologies: a phantom study. European Radiology Experimental, 2021. 5(1). https://doi.org/https://doi.org/10.1186/s41747-021-00224-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. .Sofue, K., et al., Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data. Hepatol Res, 2018. 48(12): p. 1008-1019. https://doi.org/https://doi.org/10.1111/hepr.13205

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This retrospective study was approved by the medical ethics committee of the First Affiliated Hospital of Dalian Medical University [Ethics References No: PJ-KS-KY-2019-110]. Written informed consent from subjects was waived by the ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Tong, X., Zhang, J. et al. Estimation of renal function using iodine maps in dual-energy spectral computed tomography urography: a feasibility and accuracy study. Abdom Radiol 49, 997–1005 (2024). https://doi.org/10.1007/s00261-023-04146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04146-y

Keywords

Navigation