Skip to main content
Log in

Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Radiomics allows the extraction of quantitative imaging features from clinical magnetic resonance imaging (MRI) and computerized tomography (CT) studies. The advantages of radiomics have primarily been exploited in oncological applications, including better characterization and staging of oncological lesions and prediction of patient outcomes and treatment response. The potential introduction of radiomics in the clinical setting requires the establishment of a standardized radiomics pipeline and a quality assurance program. Radiomics and texture analysis of the liver have improved the differentiation of hypervascular lesions such as adenomas, focal nodular hyperplasia, and hepatocellular carcinoma (HCC) during the arterial phase, and in the pretreatment determination of HCC prognostic factors (e.g., tumor grade, microvascular invasion, Ki-67 proliferation index). Radiomics of pancreatic CT and MR images has enhanced pancreatic ductal adenocarcinoma detection and its differentiation from pancreatic neuroendocrine tumors, mass-forming chronic pancreatitis, or autoimmune pancreatitis. Radiomics can further help to better characterize incidental pancreatic cystic lesions, accurately discriminating benign from malignant intrapancreatic mucinous neoplasms. Nonetheless, despite their encouraging results and exciting potential, these tools have yet to be implemented in the clinical setting. This non-systematic review will describe the essential steps in the implementation of the radiomics and feature extraction workflow from liver and pancreas CT and MRI studies for their potential clinical application. A succinct overview of reported radiomics applications in the liver and pancreas and the challenges and limitations of their implementation in the clinical setting is also discussed, concluding with a brief exploration of the future perspectives of radiomics in the gastroenterology field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  2. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to Radiomics. Journal of Nuclear Medicine 2020;61:488–95. https://doi.org/10.2967/jnumed.118.222893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Trans Syst Man Cybern 1973;SMC-3:610–21. https://doi.org/10.1109/TSMC.1973.4309314.

  4. Xiaoou Tang. Texture information in run-length matrices. IEEE Transactions on Image Processing 1998;7:1602–9. https://doi.org/10.1109/83.725367.

    Article  PubMed  CAS  Google Scholar 

  5. Thibault G, Angulo J, Meyer F. Advanced Statistical Matrices for Texture Characterization: Application to Cell Classification. IEEE Trans Biomed Eng 2014;61:630–7. https://doi.org/10.1109/TBME.2013.2284600.

    Article  PubMed  Google Scholar 

  6. Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, et al. Artificial intelligence in pancreatic cancer. Theranostics 2022;12:6931–54. https://doi.org/10.7150/thno.77949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, et al. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics (Basel) 2021;10:2470. https://doi.org/10.3390/electronics10202470.

    Article  Google Scholar 

  8. Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans Pattern Anal Mach Intell 2021:1–1. https://doi.org/10.1109/TPAMI.2021.3059968.

  9. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 2020;11:91. https://doi.org/10.1186/s13244-020-00887-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maleike D, Nolden M, Meinzer H-P, Wolf I. Interactive segmentation framework of the Medical Imaging Interaction Toolkit. Comput Methods Programs Biomed 2009;96:72–83. https://doi.org/10.1016/j.cmpb.2009.04.004.

    Article  PubMed  CAS  Google Scholar 

  11. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Apte AP, Iyer A, Crispin-Ortuzar M, Pandya R, van Dijk L v., Spezi E, et al. Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys 2018;45:3713–20. https://doi.org/10.1002/mp.13046.

  13. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res 2018;78:4786–9. https://doi.org/10.1158/0008-5472.CAN-18-0125.

    Article  PubMed  CAS  Google Scholar 

  14. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. Radiol Med 2021;126:1296–311. https://doi.org/10.1007/s11547-021-01389-x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rela M, Suryakari NR, Reddy PR. Liver Tumor Segmentation and Classification: A Systematic Review. 2020 IEEE-HYDCON, IEEE; 2020, p. 1–6. https://doi.org/10.1109/HYDCON48903.2020.9242757

  16. Liang Y, Schott D, Zhang Y, Wang Z, Nasief H, Paulson E, et al. Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks. Radiotherapy and Oncology 2020;145:193–200. https://doi.org/10.1016/j.radonc.2020.01.021.

    Article  PubMed  Google Scholar 

  17. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, et al. Radiomics in liver diseases: Current progress and future opportunities. Liver International 2020;40:2050–63. https://doi.org/10.1111/liv.14555.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lehmann TM, Gonner C, Spitzer K. Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 1999;18:1049–75. https://doi.org/10.1109/42.816070.

    Article  PubMed  CAS  Google Scholar 

  20. Bağcı U, Udupa JK, Bai L. The role of intensity standardization in medical image registration. Pattern Recognit Lett 2010;31:315–23. https://doi.org/10.1016/j.patrec.2009.09.010.

    Article  Google Scholar 

  21. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020;295:328–38. https://doi.org/10.1148/radiol.2020191145.

    Article  PubMed  Google Scholar 

  22. Harding‐Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W, Mendiratta‐Lala M, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther 2021;54:890–901. https://doi.org/10.1111/apt.16563.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Casà C, Piras A, D’Aviero A, Preziosi F, Mariani S, Cusumano D, et al. The impact of radiomics in diagnosis and staging of pancreatic cancer. Ther Adv Gastrointest Endosc 2022;15:263177452210815. https://doi.org/10.1177/26317745221081596.

    Article  Google Scholar 

  24. Zhao X, Liang P, Yong L, Jia Y, Gao J. Radiomics Study for Differentiating Focal Hepatic Lesions Based on Unenhanced CT Images. Front Oncol 2022;12. https://doi.org/10.3389/fonc.2022.650797.

  25. Oyama A, Hiraoka Y, Obayashi I, Saikawa Y, Furui S, Shiraishi K, et al. Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep 2019;9:8764. https://doi.org/10.1038/s41598-019-45283-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nie P, Yang G, Guo J, Chen J, Li X, Ji Q, et al. A CT-based radiomics nomogram for differentiation of focal nodular hyperplasia from hepatocellular carcinoma in the non-cirrhotic liver. Cancer Imaging 2020;20:20. https://doi.org/10.1186/s40644-020-00297-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding Z, Lin K, Fu J, Huang Q, Fang G, Tang Y, et al. An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver. World J Surg Oncol 2021;19:181. https://doi.org/10.1186/s12957-021-02266-7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cannella R, Borhani AA, Minervini MI, Tsung A, Furlan A. Evaluation of texture analysis for the differential diagnosis of focal nodular hyperplasia from hepatocellular adenoma on contrast-enhanced CT images. Abdominal Radiology 2019;44:1323–30. https://doi.org/10.1007/s00261-018-1788-5.

    Article  PubMed  Google Scholar 

  29. Cannella R, Rangaswamy B, Minervini MI, Borhani AA, Tsung A, Furlan A. Value of Texture Analysis on Gadoxetic Acid–Enhanced MRI for Differentiating Hepatocellular Adenoma From Focal Nodular Hyperplasia. American Journal of Roentgenology 2019;212:538–46. https://doi.org/10.2214/AJR.18.20182.

    Article  PubMed  Google Scholar 

  30. Wang X, Wang S, Yin X, Zheng Y. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma. Comput Biol Med 2022;141:105058. https://doi.org/10.1016/j.compbiomed.2021.105058.

    Article  PubMed  CAS  Google Scholar 

  31. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  32. Xu X, Zhang H-L, Liu Q-P, Sun S-W, Zhang J, Zhu F-P, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol 2019;70:1133–44. https://doi.org/10.1016/j.jhep.2019.02.023.

    Article  PubMed  Google Scholar 

  33. Chong H-H, Yang L, Sheng R-F, Yu Y-L, Wu D-J, Rao S-X, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm. Eur Radiol 2021;31:4824–38. https://doi.org/10.1007/s00330-020-07601-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mao B, Zhang L, Ning P, Ding F, Wu F, Lu G, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning–based radiomics. Eur Radiol 2020;30:6924–32. https://doi.org/10.1007/s00330-020-07056-5.

    Article  PubMed  Google Scholar 

  35. Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 2019;29:2802–11. https://doi.org/10.1007/s00330-018-5787-2.

    Article  PubMed  Google Scholar 

  36. Li W, Zhang G, Wang H-L, Wang L. Analysis of expression of cyclin E, p27kip1 and Ki67 protein in colorectal cancer tissues and its value for diagnosis, treatment and prognosis of disease. Eur Rev Med Pharmacol Sci 2016;20:4874–9.

    PubMed  CAS  Google Scholar 

  37. Wu H, Han X, Wang Z, Mo L, Liu W, Guo Y, et al. Prediction of the Ki-67 marker index in hepatocellular carcinoma based on CT radiomics features. Phys Med Biol 2020;65:235048. https://doi.org/10.1088/1361-6560/abac9c.

    Article  PubMed  CAS  Google Scholar 

  38. Fan Y, Yu Y, Wang X, Hu M, Hu C. Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma. BMC Med Imaging 2021;21:100. https://doi.org/10.1186/s12880-021-00633-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yuan G, Song Y, Li Q, Hu X, Zang M, Dai W, et al. Development and Validation of a Contrast-Enhanced CT-Based Radiomics Nomogram for Prediction of Therapeutic Efficacy of Anti-PD-1 Antibodies in Advanced HCC Patients. Front Immunol 2021;11. https://doi.org/10.3389/fimmu.2020.613946.

  40. Liu Q-P, Yang K-L, Xu X, Liu X-S, Qu J-R, Zhang Y-D. Radiomics analysis of pretreatment MRI in predicting tumor response and outcome in hepatocellular carcinoma with transarterial chemoembolization: a two-center collaborative study. Abdominal Radiology 2022;47:651–63. https://doi.org/10.1007/s00261-021-03375-3.

    Article  PubMed  CAS  Google Scholar 

  41. Fontaine P, Riet F-G, Castelli J, Gnep K, Depeursinge A, Crevoisier R de, et al. Comparison of feature selection in radiomics for the prediction of overall survival after radiotherapy for hepatocellular carcinoma. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE; 2020, p. 1667–70.https://doi.org/10.1109/EMBC44109.2020.9176724

  42. Ji G-W, Zhu F-P, Xu Q, Wang K, Wu M-Y, Tang W-W, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine 2019;50:156–65. https://doi.org/10.1016/j.ebiom.2019.10.057.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Becker AE, Hernandez YG, Frucht H, Lucas AL. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol 2014;20:11182–98. https://doi.org/10.3748/wjg.v20.i32.11182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Khanna L, Prasad SR, Sunnapwar A, Kondapaneni S, Anil Dasyam B, Tammisetti VS, et al. Pancreatic Neuroendocrine Neo-plasms: 2020 Update on Patho-logic and Imaging Findings and Classification n.d. https://doi.org/10.1148/rg.2020200025.

  45. Chu LC, Goggins MG, Fishman EK. Diagnosis and Detection of Pancreatic Cancer. The Cancer Journal 2017.

  46. Bronstein YL, Loyer EM, Kaur H, Choi H, David C, DuBrow RA, et al. Detection of Small Pancreatic Tumors with Multiphasic Helical CT. 2012;182:619–23. https://doi.org/10.2214/AJR.182.3.1820619.

  47. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020;76:182–8. https://doi.org/10.1111/his.13975.

    Article  PubMed  Google Scholar 

  48. Hanania AN, Bantis LE, Feng Z, Wang H, Tamm EP, Katz MH, et al. Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 2016;7:85776–84. https://doi.org/10.18632/oncotarget.11769.

  49. Ip IK, Mortele KJ, Prevedello LM, Khorasani R. Focal cystic pancreatic lesions: Assessing variation in radiologists’ management recommendations. Radiology 2011;259:136–41. https://doi.org/10.1148/radiol.10100970.

    Article  PubMed  Google Scholar 

  50. Girometti R, Intini S, Brondani G, Como G, Londero F, Bresadola F, et al. Incidental pancreatic cysts on 3D turbo spin echo magnetic resonance cholangiopancreatography: Prevalence and relation with clinical and imaging features. Abdom Imaging 2011;36:196–205. https://doi.org/10.1007/s00261-010-9618-4.

    Article  PubMed  Google Scholar 

  51. Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol 2010;105:2079–84. https://doi.org/10.1038/ajg.2010.122.

    Article  PubMed  Google Scholar 

  52. Tanaka M, Fernández-del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017;17:738–53. https://doi.org/10.1016/J.PAN.2017.07.007.

    Article  PubMed  Google Scholar 

  53. Elta GH, Enestvedt BK, Sauer BG, Lennon AM. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. American Journal of Gastroenterology 2018;113:464–79. https://doi.org/10.1038/ajg.2018.14.

    Article  PubMed  Google Scholar 

  54. del Chiaro M, Besselink MG, Scholten L, Bruno MJ, Cahen DL, Gress TM, et al. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018;67:789–804. https://doi.org/10.1136/gutjnl-2018-316027.

    Article  Google Scholar 

  55. Kee Jang D, Jun Song B, Kon Ryu J, Hyun Chung K, Seok Lee B, Kyung Park J, et al. Preoperative Diagnosis of Pancreatic Cystic Lesions The Accuracy of Endoscopic Ultrasound and Cross-Sectional Imaging. Pancreas 2015.

  56. Su JS, Jeong ML, Young JK, Se HK, Jae YL, Joon KH, et al. Differentiation of intraductal papillary mucinous neoplasms from other pancreatic cystic masses: comparison of multirow-detector CT and MR imaging using ROC analysis. Journal of Magnetic Resonance Imaging 2007;26:86–93. https://doi.org/10.1002/jmri.21001.

    Article  Google Scholar 

  57. del Chiaro M, Segersvärd R, Pozzi Mucelli R, Rangelova E, Kartalis N, Ansorge C, et al. Comparison of preoperative conference-based diagnosis with histology of cystic tumors of the pancreas. Ann Surg Oncol 2014;21:1539–44. https://doi.org/10.1245/s10434-013-3465-9.

    Article  PubMed  Google Scholar 

  58. Suzuki R, Thosani N, Annangi S, Guha S, Bhutani MS. Diagnostic yield of EUS-FNA-based cytology distinguishing malignant and benign IPMNs: A systematic review and meta-analysis. Pancreatology 2014;14:380–4. https://doi.org/10.1016/j.pan.2014.07.006.

    Article  PubMed  Google Scholar 

  59. Lubner MG, Stabo N, Lubner SJ, del Rio AM, Song C, Halberg RB, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 2015;40:2331–7. https://doi.org/10.1007/S00261-015-0438-4.

    Article  PubMed  Google Scholar 

  60. Oikonomou A, Khalvati F, Tyrrell PN, Haider MA, Tarique U, Jimenez-Juan L, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy OPEN n.d. https://doi.org/10.1038/s41598-018-22357-y.

  61. Lubner MG, Stabo N, Jason Abel E, Munoz del Rio A, Pickhardt PJ, del Rio MA, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. AJR Am J Roentgenol 2016. https://doi.org/10.2214/AJR.15.15451.

  62. Anta JA, Martínez-Ballestero I, Eiroa D, García J, Rodríguez-Comas J. Artificial intelligence for the detection of pancreatic lesions. Int J Comput Assist Radiol Surg 2022. https://doi.org/10.1007/s11548-022-02706-z.

    Article  PubMed  Google Scholar 

  63. Duh MM, Torra-Ferrer N, Riera-Marín M, Cumelles D, Rodríguez-Comas J, García López J, et al. Deep Learning to Detect Pancreatic Cystic Lesions on Abdominal Computed Tomography Scans: Development and Validation Study. JMIR AI 2023;2:e40702. https://doi.org/10.2196/40702.

    Article  Google Scholar 

  64. Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Rajamohan N, Suman G, et al. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022;163. https://doi.org/10.1053/J.GASTRO.2022.06.066.

  65. Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. American Journal of Roentgenology 2019;213:349–57. https://doi.org/10.2214/AJR.18.20901.

    Article  PubMed  Google Scholar 

  66. Ren S, Zhao R, Zhang J, Guo K, Gu X, Duan S, et al. Diagnostic accuracy of unenhanced CT texture analysis to differentiate mass-forming pancreatitis from pancreatic ductal adenocarcinoma. Abdominal Radiology 2020;45:1524–33. https://doi.org/10.1007/s00261-020-02506-6.

    Article  PubMed  Google Scholar 

  67. Chen P-T, Chang D, Yen H, Liu K-L, Huang S-Y, Roth H, et al. Radiomic Features at CT Can Distinguish Pancreatic Cancer from Noncancerous Pancreas • Content codes. Radiol Imaging Cancer 2021;3:210010. https://doi.org/10.1148/rycan.2021210010.

    Article  Google Scholar 

  68. Yun G, Kim YH, Lee YJ, Kim B, Hwang J-H, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep 2018;8:7226. https://doi.org/10.1038/s41598-018-25627-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Chakraborty J, Langdon-Embry L, Cunanan KM, Escalon JG, Allen PJ, Lowery MA, et al. Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PLoS One 2017;12:e0188022. https://doi.org/10.1371/journal.pone.0188022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Attiyeh MA, Chakraborty J, Doussot A, Langdon-Embry L, Mainarich S, Gönen M, et al. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Ann Surg Oncol 2018;25:1034–42. https://doi.org/10.1245/s10434-017-6323-3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cassinotto C, Chong J, Zogopoulos G, Reinhold C, Chiche L, Lafourcade J-P, et al. Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol 2017;90:152–8. https://doi.org/10.1016/j.ejrad.2017.02.033.

    Article  PubMed  Google Scholar 

  72. Eilaghi A, Baig S, Zhang Y, Zhang J, Karanicolas P, Gallinger S, et al. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 2017;17:1–7. https://doi.org/10.1186/S12880-017-0209-5/FIGURES/3.

    Article  Google Scholar 

  73. Khalvati F, Zhang Y, Baig S, Lobo-Mueller EM, Karanicolas P, Gallinger S, et al. Prognostic Value of Ct Radiomic Features in Resectable pancreatic Ductal Adenocarcinoma. Sci Rep 2019;9:5449. https://doi.org/10.1038/s41598-019-41728-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chen X, Oshima K, Schott D, Wu H, Hall W, Song Y, et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study. PLoS One 2017. https://doi.org/10.1371/journal.pone.0178961.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Elsherif SB, Javadi S, Le O, Lamba N, Katz MHG, Tamm EP, et al. Baseline CT-based Radiomic Features Aid Prediction of Nodal Positivity after Neoadjuvant Therapy in Pancreatic Cancer. Radiol Imaging Cancer 2022;4. https://doi.org/10.1148/rycan.210068.

  76. Reinert CP, Karolin Baumgartner, Tobias Hepp, Bitzer Michael, Horger M. Complementary role of computed tomography texture analysis for differentiation of pancreatic ductal adenocarcinoma from pancreatic neuroendocrine tumors in the portal-venous enhancement phase. Abdominal Radiology 2020;45:750–8. https://doi.org/10.1007/s00261-020-02406-9.

  77. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. European Radiology 2019 29:12 2019;29:6880–90. https://doi.org/10.1007/S00330-019-06176-X.

  78. Zhang T, Zhang Y, Liu X, Xu H, Chen C, Zhou X, et al. Application of Radiomics Analysis Based on CT Combined With Machine Learning in Diagnostic of Pancreatic Neuroendocrine Tumors Patient’s Pathological Grades. Front Oncol 2021;10:521831. https://doi.org/10.3389/fonc.2020.521831.

    Article  PubMed  PubMed Central  Google Scholar 

  79. E L, Xu Y, Wu Z, Li L, Zhang N, Yang H, et al. Differentiation of Focal-Type Autoimmune Pancreatitis From Pancreatic Ductal Adenocarcinoma Using Radiomics Based on Multiphasic Computed Tomography. J Comput Assist Tomogr 2020;44:511–8. https://doi.org/10.1097/RCT.0000000000001049.

  80. Shiraishi M, Igarashi T, Hiroaki F, Oe R, Ohki K, Ojiri H. Radiomics based on diffusion-weighted imaging for differentiation between focal-type autoimmune pancreatitis and pancreatic carcinoma. Br J Radiol 2022. https://doi.org/10.1259/bjr.20210456.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tobaly D, Santinha J, Sartoris R, Dioguardi Burgio M, Matos C, Cros J, et al. CT-Based Radiomics Analysis to Predict Malignancy in Patients with Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Cancers (Basel) 2020;12:3089. https://doi.org/10.3390/cancers12113089.

    Article  PubMed  CAS  Google Scholar 

  82. Wei R, Lin K, Yan W, Guo Y, Wang Y, Li J, et al. Computer-Aided Diagnosis of Pancreas Serous Cystic Neoplasms: A Radiomics Method on Preoperative MDCT Images. Technol Cancer Res Treat 2019. https://doi.org/10.1177/1533033818824339.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shen X, Yang F, Yang P, et al. A Contrast-Enhanced Computed Tomography Based Radiomics Approach for Preoperative Differentiation of Pancreatic Cystic Neoplasm Subtypes: A Feasibility Study. Frontiers in Oncology | WwwFrontiersinOrg 2020;10:248. https://doi.org/10.3389/fonc.2020.00248.

  84. Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, et al. Prevalence of Unsuspected Pancreatic Cysts on MDCT. American Journal of Roentgenology 2008;191:802–7. https://doi.org/10.2214/AJR.07.3340.

    Article  PubMed  Google Scholar 

  85. Kromrey M-L, Bülow R, Hübner J, Paperlein C, Lerch MM, Ittermann T, et al. Prospective study on the incidence, prevalence and 5-year pancreatic-related mortality of pancreatic cysts in a population-based study. Gut 2018;67:138–45. https://doi.org/10.1136/gutjnl-2016-313127.

    Article  PubMed  Google Scholar 

  86. Scheiman JM, Hwang JH, Moayyedi P. American Gastroenterological Association Technical Review on the Diagnosis and Management of Asymptomatic Neoplastic Pancreatic Cysts. Gastroenterology 2015;148:824-848.e22. https://doi.org/10.1053/j.gastro.2015.01.014.

    Article  PubMed  Google Scholar 

  87. Yamashita R, Perrin T, Chakraborty J, Chou JF, Horvat N, Koszalka MA, et al. Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. European Radiology 2019 30:1 2019;30:195–205. https://doi.org/10.1007/S00330-019-06381-8.

  88. Zhong X, Long H, Su L, Zheng R, Wang W, Duan Y, et al. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdominal Radiology 2022;47:2071–88. https://doi.org/10.1007/s00261-022-03496-3.

    Article  PubMed  Google Scholar 

  89. Cannella R, Vernuccio F, Klontzas ME, Ponsiglione A, Petrash E, Ugga L, et al. Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII Radiomics Auditing Group Initiative. Insights Imaging 2023;14:21. https://doi.org/10.1186/s13244-023-01365-1.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol 2016;61:R150–66. https://doi.org/10.1088/0031-9155/61/13/R150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hatt M, le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: Data Are Also Images. Journal of Nuclear Medicine 2019;60:38S-44S. https://doi.org/10.2967/jnumed.118.220582.

    Article  PubMed  Google Scholar 

  92. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141.

    Article  PubMed  Google Scholar 

  93. Liu R, Elhalawani H, Radwan Mohamed AS, Elgohari B, Court L, Zhu H, et al. Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin Transl Radiat Oncol 2020;21:11–8. https://doi.org/10.1016/j.ctro.2019.11.005.

    Article  PubMed  CAS  Google Scholar 

  94. Jensen LJ, Kim D, Elgeti T, Steffen IG, Hamm B, Nagel SN. Stability of Liver Radiomics across Different 3D ROI Sizes—An MRI In Vivo Study. Tomography 2021;7:866–76. https://doi.org/10.3390/tomography7040073.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kocak B, Bulut E, Bayrak ON, Okumus AA, Altun O, Borekci Arvas Z, et al. NEgatiVE results in Radiomics research (NEVER): A meta-research study of publication bias in leading radiology journals. Eur J Radiol 2023;163:110830. https://doi.org/10.1016/j.ejrad.2023.110830.

    Article  PubMed  Google Scholar 

  96. Cannella R, Santinha J, Bèaufrere A, Ronot M, Sartoris R, Cauchy F, et al. Performances and variability of CT radiomics for the prediction of microvascular invasion and survival in patients with HCC: a matter of chance or standardisation? Eur Radiol 2023. https://doi.org/10.1007/s00330-023-09852-1.

    Article  PubMed  Google Scholar 

  97. Healy GM, Salinas-Miranda E, Jain R, Dong X, Deniffel D, Borgida A, et al. Pre-operative radiomics model for prognostication in resectable pancreatic adenocarcinoma with external validation. Eur Radiol 2022;32:2492–505. https://doi.org/10.1007/s00330-021-08314-w.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Reyes Sanles-Falagan for her help with manuscript formatting and editing, and additional administrative assistance.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Information compilation: MÁB, FPG, JR-C, EN, RG-F, SB-G, and AL; manuscript writing: MÁB, FPG, JR-C, and EN; critical reading: AL.

Corresponding author

Correspondence to M. Álvaro Berbís.

Ethics declarations

Conflict of interest

M. Álvaro Berbís is CEO and Board Member of Cells IA Technologies; Antonio Luna received institutional royalties and institutional payments for lectures, presentations, speaker bureaus, manuscript writing or educational events from Canon, Bracco, Siemens Healthineers, and Philips Healthcare and is a Board Member of Cells IA Technologies; the remaining authors declare no competing interests. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berbís, M.Á., Godino, F.P., Rodríguez-Comas, J. et al. Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application. Abdom Radiol 49, 322–340 (2024). https://doi.org/10.1007/s00261-023-04071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04071-0

Keywords

Navigation