Skip to main content

Advertisement

Log in

F-18 FDG perfusion PET: intraprocedural assessment of the liver tumor ablation margin

  • Interventional Radiology
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate 18F-fluorodeoxyglucose (FDG) perfusion PET during FDG PET/CT-guided liver tumor microwave ablation procedures for assessing the ablation margin and correlating minimum margin measurements with local progression.

Methods

This IRB-approved, HIPAA-compliant study included 20 adult patients (11 M, 9 F; mean age 65) undergoing FDG PET/CT-guided liver microwave ablation to treat 31 FDG-avid tumors. Intraprocedural FDG perfusion PET was performed to assess the ablation margin. Intraprocedural decisions regarding overlapping ablations were recorded. Two readers retrospectively interpreted intraprocedural perfusion PET and postprocedural contrast-enhanced MRI. Assessability of the ablation margin and minimum margin measurements were recorded. Imaging follow-up for local progression ranged from 30 to 574 days (mean 310). Regression modeling of minimum margin measurements was performed. Hazard ratios were calculated to correlate an ablation margin threshold of 5 mm with outcomes.

Results

Intraprocedural perfusion PET prompted additional overlapping ablations of two tumors, neither of which progressed. Incomplete ablation or local progression occurred in 8/31 (26%) tumors. With repeat ablation, secondary efficacy was 26 (84%) of 31. Both study readers deemed ablation margins fully assessable more often using perfusion PET than MRI (OR 69.7; CI 6.0, 806.6; p = 0.001). Minimum ablation margins ≥ 5 mm on perfusion PET correlated with a low risk of incomplete ablation/local progression by both study readers (HR 0.08 and 0.02, p < 0.001).

Conclusion

Intraprocedural FDG perfusion PET consistently enabled complete liver tumor microwave ablation margin assessments, and the perfusion PET minimum ablation margin measurements correlated well with local outcomes.

Clinical trial registration clinicaltrials.gov (NCT02018107).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly available as the data are contained within our hospital electronic medical record but are available from the corresponding author on reasonable request.

Code availability (Software application or custom code)

Not applicable.

References

  1. Weinstein JL, Ahmed M. Percutaneous ablation for hepatocellular carcinoma. AJR Am J Roentgenol 2018;210(6):1368-1375 doi: https://doi.org/10.2214/AJR.17.18695

    Article  PubMed  Google Scholar 

  2. Meijerink MR, Puijk RS, vanTilborg AAJM, Henningsen KH, Fernandez LG, Neyt M, Heymans J, Frankema JS, de Jong KP, Richel DJ, Prevoo W, Vlayen J. Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc Intervent Radiol 2018;41(8):1189-1204 doi: https://doi.org/10.1007/s00270-018-1959-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Winkelmann MT, Clasen S, Pereira PL, Hoffmann R. Local treatment of oligometastatic disease: current role. Br J Radiol 2019:92(1100):20180835 doi: https://doi.org/10.1259/bjr.20180835

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastasis: Factors affecting outcomes – A 10 -year experience at a single center. Radiology 2016;278(2):601-611 doi: https://doi.org/10.1148/radiol.2015142489

    Article  PubMed  Google Scholar 

  5. Hocquelet A, Trillaud H, Frulio N, Papadopoulos P, Balageas P, Salut C, Meyer M, Blanc JF, Montaudon M, Denis de Senneville B. Three-dimensional measurement of hepatocellular carcinoma ablation zones and margins for predicting local tumor progression. J Vasc Interv Radiol 2016;27(7):1038-1045 doi: https://doi.org/10.1016/j.jvir.2016.02.031

    Article  PubMed  Google Scholar 

  6. Yoon JH, Lee JM, Klotz E, Woo H, Yu MH, Joo I, Lee ES, Han JK. Prediction of local tumor progression after radiofrequency ablation (RFA) of hepatocellular carcinoma by assessment of ablative margin using preRFA MRI and post-RFA CT registration. Korean J Radiol 2018;19(6):1053-1065 doi: https://doi.org/10.3348/kjr.2018.19.6.1053

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shady W, Petre EN, Do KG, Gonen M, Yarmohammadi H, Brown KT, Kemeny NE, D’Angelica M, Kingham PT, Solomon SB, Sofocleous CT. Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local control. J Vasc Interv Radiol 2018;29(2):268-275 doi: https://doi.org/10.1016/j.jvir.2017.08.021

    Article  PubMed  Google Scholar 

  8. Makino Y, Imai Y, Igura T et al. Feasibility of extracted-overlay fusion imaging for intra-operative treatment evaluation of radiofrequency ablation for hepatocellular carcinoma. Liver Cancer 2016;5(4):269-279 doi: https://doi.org/10.1159/000449338

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li K, Su ZZ, Xu EJ, Ju JX, Meng XC, Zheng RQ. Improvement of ablative margins by the intraoperative use of CEUS-CT/MR image fusion in hepatocellular carcinoma. BMC Cancer 2016;16:277 doi: https://doi.org/10.1186/s12885-016-2306-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (> 2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion). AJR AM J Roentgenol 2010;195(3):758-765 doi: https://doi.org/10.2214/AJR.09.2954

    Article  PubMed  Google Scholar 

  11. Kim SM, Shin SS, Lee BC, Kim JW, Heo SH, Lim HS, Jeong YY. Imaging evaluation of ablative margin and index tumor immediately after radiofrequency ablation for hepatocellular carcinoma: comparison between multidetector-row CT and MR imaging. Abdom Radiol 2017;42(10):2527-2537 doi: https://doi.org/10.1007/s00261-017-1146-z

    Article  Google Scholar 

  12. Schaible J, Pregler B, Baumler WW, Einspieler I, Jung EM, Stroszczynski C, Beyer LP. Safety margin assessment after microwave ablation of liver tumors: inter- and intrareader variability. Radiol Oncol. 2020;54(1):57-61 doi:https://doi.org/10.2478/raon-2020-0004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fukuda K, Mori K, Hasegawa N, Nasu K, Ishige K, Okamoto Y, Shiigai M, Abei M, Minami M, Hyodo I. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a prospective study using magnetic resonance imaging with superparamagnetic iron oxide. Jpn J Radiol 2019:37(7):555-563 doi: https://doi.org/10.1007/s11604-019-00843-1

    Article  CAS  PubMed  Google Scholar 

  14. Solbiati M, Muglia R, Goldberg SN, Ierace T, Rotilio A, Passera KM, Marre I, Solbiati L. A novel software platform for volumetric assessment of ablation completeness. Int J Hyperthermia 2019;36(1):337-343 doi: https://doi.org/10.1080/02656736.2019.1569267

    Article  PubMed  Google Scholar 

  15. Calandri M, Mauri G, Yevich S, Gazzera C, Basile D, Gatti M, Veltri A, Fonio P. Fusion imaging and virtual navigation to guide percutaneous thermal ablation of hepatocellular carcinoma: a review of the literature. Cardiovasc Intervent Radiol 2019;42(5):639-647 doi: https://doi.org/10.1007/s00270-019-02167-z

    Article  PubMed  Google Scholar 

  16. Bing F, Vappou J, Breton E, Enescu I, Garmon J, Gangi A. Accuracy of CT-Ultrasound Fusion Imaging Guidance System Used for hepatic percutaneous procedures. J Vasc Interv Radiol 2019;30(7):1013-1020 doi: https://doi.org/10.1016/j.jvir.2018.11.034

    Article  PubMed  Google Scholar 

  17. Kaye EA, Cornelis FH, Petre EN, Tyagi N, Shady W, Shi W, Zhang Z, Solomon SB, Sofocleous CT, Durack JC. Volumetric 3D assessment of ablation zones after thermal ablation of colorectal liver metastases to improve prediction of local tumor progression. Eur Radiol 2019;29(5):2698-2705 doi: https://doi.org/10.1007/s00330-018-5809-0

    Article  PubMed  Google Scholar 

  18. Sainani NI, Shyn PB, Tatli S, Morrison PR, Tuncali K, Silverman SG. PET/CT-guided radiofrequency and cryoablation: is tumor fluorine-18 fluorodeoxyglucose activity, dissipated by thermal ablation? J Vasc Interv Radiol 2011;22(3):354–360 doi: https://doi.org/10.1016/j.jvir.2010.11.027

    Article  PubMed  Google Scholar 

  19. Shyn PB, Casadaban LC, Sainani NI, Sadow CA, Bunch PM, Levesque VM, Kim CK, Gerbaudo VH, Silverman SG. Intraprocedural ablation margin assessment by using ammonia perfusion PET during FDG PET/CT-guided liver tumor ablation: a pilot study. Radiology 2018;288:138–145 doi: https://doi.org/10.1148/radiol.2018172108

    Article  PubMed  Google Scholar 

  20. Cornelis FH, Petre EN, Vakiani E, Klimstra D, Durack JC, Gonen M, Osborne J, Solomon SB, Sofocleous CT. Immediate postablation 18F-FDG injection and corresponding SUV are surrogate biomarkers of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J Nucl Med 2018;59(9):1360-1365 doi: https://doi.org/10.2967/jnumed.117.194506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brace CL, Diaz TA, Hinshaw JL, Lee FT. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol 2010;21(8):1280–1286 doi: https://doi.org/10.1016/j.jvir.2010.02.038

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee JK, Siripongsakun S, Bahrami S, Raman SS, Sayre J, Lu DS. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom Radiol 2016;41(4):659-66 doi: https://doi.org/10.1007/s00261-016-0725-8

    Article  CAS  Google Scholar 

  23. Kim SM, Koda M, Tokunaga S, Okamoto T, Hodozuka M, Miyoshi K, Kishina M, Fuise Y, Kato J, Matono T, Sugihara T, Oyama K, Hosho K, Okano J, Murawaki Y, Kakite S, Yamashita E. Clinical usefulness of the ablative margin assessed by magnetic resonance imaging with Gd-EOB-DTPA for radiofrequency ablation of hepatocellular carcinoma. J Hepatol 2015;63(6):1360-7 doi: https://doi.org/10.1016/j.jhep.2015.07.023

    Article  Google Scholar 

Download references

Funding

Research funding was provided by Siemens Healthineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Shyn.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The Institutional Review Board (IRB) reviewed and approved the study including review of health/medical records. The study was conducted in compliance with the Health Insurance Portability and Accountability Act.

Informed consent

Informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyn, P.B., Cubre, A.J., Catalano, P.J. et al. F-18 FDG perfusion PET: intraprocedural assessment of the liver tumor ablation margin. Abdom Radiol 46, 3437–3447 (2021). https://doi.org/10.1007/s00261-021-02970-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-02970-8

Keywords

Navigation