Skip to main content

Advertisement

Log in

Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel

  • Pictorial essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Hepatic fibrosis is potentially reversible; however early diagnosis is necessary for treatment in order to halt progression to cirrhosis and development of complications including portal hypertension and hepatocellular carcinoma. Morphologic signs of cirrhosis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) alone are unreliable and are seen with more advanced disease. Newer imaging techniques to diagnose liver fibrosis are reliable and accurate, and include magnetic resonance elastography and US elastography (one-dimensional transient elastography and point shear wave elastography or acoustic radiation force impulse imaging). Research is ongoing with multiple other techniques for the noninvasive diagnosis of hepatic fibrosis, including MRI with diffusion-weighted imaging, hepatobiliary contrast enhancement, and perfusion; CT using perfusion, fractional extracellular space techniques, and dual-energy, contrast-enhanced US, texture analysis in multiple modalities, quantitative mapping, and direct molecular imaging probes. Efforts to advance the noninvasive imaging assessment of hepatic fibrosis will facilitate earlier diagnosis and improve patient monitoring with the goal of preventing the progression to cirrhosis and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38(Suppl 1):S38–S53

    Article  PubMed  Google Scholar 

  2. Goodman Z, Becker RJ, Pockros P, Afdhal N (2007) Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology 45(4):886–894. doi:10.1002/hep.21595

    Article  CAS  PubMed  Google Scholar 

  3. Shiffman ML, Stravitz RT, Contos MJ, et al. (2004) Histologic recurrence of chronic hepatitis C virus in patients after living donor and deceased donor liver transplantation. Liver Transpl 10(10):1248–1255. doi:10.1002/lt.20232

    Article  PubMed  Google Scholar 

  4. Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841. doi:10.1136/gutjnl-2014-306842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10(1):1–10. doi:10.1055/s-2008-1040452

    Article  CAS  PubMed  Google Scholar 

  6. Rojkind M, Ponce-Noyola P (1982) The extracellular matrix of the liver. Coll Relat Res 2(2):151–175

    Article  CAS  PubMed  Google Scholar 

  7. Pinzani M, Rombouts K (2004) Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 36(4):231–242. doi:10.1016/j.dld.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Pinzani M, Rombouts K, Colagrande S (2005) Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol. 42(Suppl 1):S22–36. doi:10.1016/j.jhep.2004.12.008

    Article  PubMed  Google Scholar 

  9. Ratziu V, Charlotte F, Heurtier A, et al. (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128(7):1898–1906. doi:10.1053/j.gastro.2005.03.084

    Article  PubMed  Google Scholar 

  10. Regev A, Berho M, Jeffers LJ, et al. (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97(10):2614–2618. doi:10.1111/j.1572-0241.2002.06038.x

    Article  PubMed  Google Scholar 

  11. Chen J, Yin M, Talwalkar JA, et al. (2017) Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology 283(2):418–428. doi:10.1148/radiol.2016160685

    Article  PubMed  Google Scholar 

  12. Dai DF, Swanson PE, Krieger EV, et al. (2014) Congestive hepatic fibrosis score: a novel histologic assessment of clinical severity. Mod Pathol 27(12):1552–1558. doi:10.1038/modpathol.2014.79

    Article  PubMed  Google Scholar 

  13. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94(9):2467–2474. doi:10.1111/j.1572-0241.1999.01377.x

    Article  CAS  PubMed  Google Scholar 

  14. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut 55(4):569–578. doi:10.1136/gut.2005.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biagini G, Ballardini G (1989) Liver fibrosis and extracellular matrix. J Hepatol 8(1):115–124

    Article  CAS  PubMed  Google Scholar 

  16. Lazzarini AL, Levine RA, Ploutz-Snyder RJ, Sanderson SO (2005) Advances in digital quantification technique enhance discrimination between mild and advanced liver fibrosis in chronic hepatitis C. Liver Int 25(6):1142–1149. doi:10.1111/j.1478-3231.2005.01155.x

    Article  PubMed  Google Scholar 

  17. Knodell RG, Ishak KG, Black WC, et al. (1981) Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1(5):431–435

    Article  CAS  PubMed  Google Scholar 

  18. Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24(2):289–293. doi:10.1002/hep.510240201

    Article  CAS  PubMed  Google Scholar 

  19. Batts KP, Ludwig J (1995) Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol 19(12):1409–1417

    Article  CAS  PubMed  Google Scholar 

  20. Elphick DA, Dube AK, McFarlane E, Jones J, Gleeson D (2007) Spectrum of liver histology in presumed decompensated alcoholic liver disease. Am J Gastroenterol 102(4):780–788. doi:10.1111/j.1572-0241.2006.01034.x

    Article  PubMed  Google Scholar 

  21. Kakuda Y, Harada K, Sawada-Kitamura S, et al. (2013) Evaluation of a new histologic staging and grading system for primary biliary cirrhosis in comparison with classical systems. Hum Pathol 44(6):1107–1117. doi:10.1016/j.humpath.2012.09.017

    Article  PubMed  Google Scholar 

  22. Portmann B, Zen Y (2012) Inflammatory disease of the bile ducts-cholangiopathies: liver biopsy challenge and clinicopathological correlation. Histopathology 60(2):236–248. doi:10.1111/j.1365-2559.2011.03853.x

    Article  PubMed  Google Scholar 

  23. Kim MY, Cho MY, Baik SK, et al. (2011) Histological subclassification of cirrhosis using the Laennec fibrosis scoring system correlates with clinical stage and grade of portal hypertension. J Hepatol 55(5):1004–1009. doi:10.1016/j.jhep.2011.02.012

    Article  PubMed  Google Scholar 

  24. Rastogi A, Maiwall R, Bihari C, et al. (2013) Cirrhosis histology and Laennec staging system correlate with high portal pressure. Histopathology 62(5):731–741. doi:10.1111/his.12070

    Article  PubMed  Google Scholar 

  25. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G (2006) Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol 44(1):111–117. doi:10.1016/j.jhep.2005.07.036

    Article  PubMed  Google Scholar 

  26. Tsochatzis E, Bruno S, Isgro G, et al. (2014) Collagen proportionate area is superior to other histological methods for sub-classifying cirrhosis and determining prognosis. J Hepatol 60(5):948–954. doi:10.1016/j.jhep.2013.12.023

    Article  CAS  PubMed  Google Scholar 

  27. Kumar M, Sakhuja P, Kumar A, et al. (2008) Histological subclassification of cirrhosis based on histological-haemodynamic correlation. Aliment Pharmacol Ther 27(9):771–779. doi:10.1111/j.1365-2036.2008.03653.x

    Article  CAS  PubMed  Google Scholar 

  28. Guido M (2011) Chronic hepatitis: grading and staging. In: Saxena R (ed). Practical Hepatic Pathology: A Diagnostic Approach. St. Louis: WB Sanders, pp 201–213. doi:10.1016/B978-0-443-06803-4.00016-2

  29. Goodman ZD, Stoddard AM, Bonkovsky HL, et al. (2009) Fibrosis progression in chronic hepatitis C: morphometric image analysis in the HALT-C trial. Hepatology 50(6):1738–1749. doi:10.1002/hep.23211

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chou R, Wasson N (2013) Blood tests to diagnose fibrosis or cirrhosis in patients with chronic hepatitis C virus infection: a systematic review. Ann Intern Med 158(11):807–820. doi:10.7326/0003-4819-158-11-201306040-00005

    Article  PubMed  Google Scholar 

  31. Parkes J, Guha IN, Roderick P, Rosenberg W (2006) Performance of serum marker panels for liver fibrosis in chronic hepatitis C. J Hepatol 44(3):462–474. doi:10.1016/j.jhep.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  32. Udell JA, Wang CS, Tinmouth J, et al. (2012) Does this patient with liver disease have cirrhosis? Jama 307(8):832–842. doi:10.1001/jama.2012.186

    Article  CAS  PubMed  Google Scholar 

  33. Tan KC (2008) Enlargement of the hilar periportal space. Radiology 248(2):699–700. doi:10.1148/radiol.2482060463

    Article  PubMed  Google Scholar 

  34. Ito K, Mitchell DG, Gabata T (2000) Enlargement of hilar periportal space: a sign of early cirrhosis at MR imaging. J Magn Reson Imaging 11(2):136–140

    Article  CAS  PubMed  Google Scholar 

  35. Awaya H, Mitchell DG, Kamishima T, et al. (2002) Cirrhosis: modified caudate-right lobe ratio. Radiology 224(3):769–774. doi:10.1148/radiol.2243011495

    Article  PubMed  Google Scholar 

  36. Di Lelio A, Cestari C, Lomazzi A, Beretta L (1989) Cirrhosis: diagnosis with sonographic study of the liver surface. Radiology 172(2):389–392

    Article  PubMed  Google Scholar 

  37. Giorgio A, Amoroso P, Lettieri G, et al. (1986) Cirrhosis: value of caudate to right lobe ratio in diagnosis with US. Radiology 161(2):443–445. doi:10.1148/radiology.161.2.3532188

    Article  CAS  PubMed  Google Scholar 

  38. Ito K, Mitchell DG, Gabata T, Hussain SM (1999) Expanded gallbladder fossa: simple MR imaging sign of cirrhosis. Radiology 211(3):723–726. doi:10.1148/radiology.211.3.r99ma31723

    Article  CAS  PubMed  Google Scholar 

  39. Ito K, Mitchell DG, Kim MJ, et al. (2003) Right posterior hepatic notch sign: a simple diagnostic MR finding of cirrhosis. J Magn Reson Imaging 18(5):561–566. doi:10.1002/jmri.10387

    Article  PubMed  Google Scholar 

  40. Lafortune M, Matricardi L, Denys A, et al. (1998) Segment 4 (the quadrate lobe): a barometer of cirrhotic liver disease at US. Radiology 206(1):157–160. doi:10.1148/radiology.206.1.9423666

    Article  CAS  PubMed  Google Scholar 

  41. Simonovsky V (1999) The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. Br J Radiol 72(853):29–34

    Article  CAS  PubMed  Google Scholar 

  42. Tan KC (2008) The right posterior hepatic notch sign. Radiology 248(1):317–318. doi:10.1148/radiol.2481051024

    Article  PubMed  Google Scholar 

  43. Torres WE, Whitmire LF, Gedgaudas-McClees K, Bernardino ME (1986) Computed tomography of hepatic morphologic changes in cirrhosis of the liver. J Comput Assist Tomogr 10(1):47–50

    Article  CAS  PubMed  Google Scholar 

  44. Yu JS, Shim JH, Chung JJ, Kim JH, Kim KW (2010) Double contrast-enhanced MRI of viral hepatitis-induced cirrhosis: correlation of gross morphological signs with hepatic fibrosis. Br J Radiol 83(987):212–217. doi:10.1259/bjr/70974553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Zhang XM, Prowda JC, et al. (2009) Changes in hepatic venous morphology with cirrhosis on MRI. J Magn Reson Imaging 29(5):1085–1092. doi:10.1002/jmri.21718

    Article  PubMed  Google Scholar 

  46. Rustogi R, Horowitz J, Harmath C, et al. (2012) Accuracy of MR elastography and anatomic MR imaging features in the diagnosis of severe hepatic fibrosis and cirrhosis. J Magn Reson Imaging 35(6):1356–1364. doi:10.1002/jmri.23585

    Article  PubMed  PubMed Central  Google Scholar 

  47. Venkatesh SK, Yin M, Takahashi N, et al. (2015) Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography. Abdom Imaging 40(4):766–775. doi:10.1007/s00261-015-0347-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aube C, Oberti F, Korali N, et al. (1999) Ultrasonographic diagnosis of hepatic fibrosis or cirrhosis. J Hepatol 30(3):472–478

    Article  CAS  PubMed  Google Scholar 

  49. Allan R, Thoirs K, Phillips M (2010) Accuracy of ultrasound to identify chronic liver disease. World J Gastroenterol 16(28):3510–3520

    Article  PubMed  PubMed Central  Google Scholar 

  50. Colli A, Colucci A, Paggi S, et al. (2005) Accuracy of a predictive model for severe hepatic fibrosis or cirrhosis in chronic hepatitis C. World J Gastroenterol 11(46):7318–7322

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50(1):17–35. doi:10.1016/j.jhep.2008.10.016

    Article  PubMed  Google Scholar 

  52. Tchelepi H, Ralls PW, Radin R, Grant E (2002) Sonography of diffuse liver disease. J Ultrasound Med 21(9):1023–1032 (quiz 1033–1024)

    Article  PubMed  Google Scholar 

  53. Hultcrantz R, Gabrielsson N (1993) Patients with persistent elevation of aminotransferases: investigation with ultrasonography, radionuclide imaging and liver biopsy. J Intern Med 233(1):7–12

    Article  CAS  PubMed  Google Scholar 

  54. Mathiesen UL, Franzen LE, Aselius H, et al. (2002) Increased liver echogenicity at ultrasound examination reflects degree of steatosis but not of fibrosis in asymptomatic patients with mild/moderate abnormalities of liver transaminases. Dig Liver Dis 34(7):516–522

    Article  CAS  PubMed  Google Scholar 

  55. Haktanir A, Cihan BS, Celenk C, Cihan S (2005) Value of Doppler sonography in assessing the progression of chronic viral hepatitis and in the diagnosis and grading of cirrhosis. J Ultrasound Med 24(3):311–321

    Article  PubMed  Google Scholar 

  56. Kawanaka H, Kinjo N, Anegawa G, et al. (2008) Abnormality of the hepatic vein waveforms in cirrhotic patients with portal hypertension and its prognostic implications. J Gastroenterol Hepatol 23(7 Pt 2):e129–e136. doi:10.1111/j.1440-1746.2007.05155.x

    Article  PubMed  Google Scholar 

  57. Oguzkurt L, Yildirim T, Torun D, et al. (2005) Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver. Eur J Radiol 54(2):253–257. doi:10.1016/j.ejrad.2004.05.011

    Article  PubMed  Google Scholar 

  58. Bernatik T, Strobel D, Hahn EG, Becker D (2002) Doppler measurements: a surrogate marker of liver fibrosis? Eur J Gastroenterol Hepatol 14(4):383–387

    Article  PubMed  Google Scholar 

  59. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques. Am J Roentgenol 205(1):22–32. doi:10.2214/AJR.15.14552

    Article  Google Scholar 

  60. Bota S, Herkner H, Sporea I, et al. (2013) Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int 33(8):1138–1147. doi:10.1111/liv.12240

    Article  PubMed  Google Scholar 

  61. Friedrich-Rust M, Ong MF, Martens S, et al. (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134(4):960–974. doi:10.1053/j.gastro.2008.01.034

    Article  PubMed  Google Scholar 

  62. Talwalkar JA, Kurtz DM, Schoenleber SJ, West CP, Montori VM (2007) Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol 5(10):1214–1220. doi:10.1016/j.cgh.2007.07.020

    Article  PubMed  Google Scholar 

  63. Tsochatzis EA, Gurusamy KS, Ntaoula S, et al. (2011) Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol 54(4):650–659. doi:10.1016/j.jhep.2010.07.033

    Article  CAS  PubMed  Google Scholar 

  64. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: part 2, diagnostic performance, confounders, and future directions. Am J Roentgenol 205(1):33–40. doi:10.2214/AJR.15.14553

    Article  Google Scholar 

  65. Ferraioli G, Tinelli C, Dal Bello B, et al. (2013) Performance of liver stiffness measurements by transient elastography in chronic hepatitis. World J Gastroenterol 19(1):49–56. doi:10.3748/wjg.v19.i1.49

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim SU, Han KH, Ahn SH (2010) Transient elastography in chronic hepatitis B: an Asian perspective. World J Gastroenterol 16(41):5173–5180

    Article  PubMed  PubMed Central  Google Scholar 

  67. Reiberger T, Ferlitsch A, Payer BA, et al. (2012) Noninvasive screening for liver fibrosis and portal hypertension by transient elastography—a large single center experience. Wien Klin Wochenschr 124(11–12):395–402. doi:10.1007/s00508-012-0190-5

    Article  PubMed  Google Scholar 

  68. Degos F, Perez P, Roche B, et al. (2010) Diagnostic accuracy of FibroScan and comparison to liver fibrosis biomarkers in chronic viral hepatitis: a multicenter prospective study (the FIBROSTIC study). J Hepatol 53(6):1013–1021. doi:10.1016/j.jhep.2010.05.035

    Article  PubMed  Google Scholar 

  69. Myers RP, Pomier-Layrargues G, Kirsch R, et al. (2012) Discordance in fibrosis staging between liver biopsy and transient elastography using the FibroScan XL probe. J Hepatol 56(3):564–570. doi:10.1016/j.jhep.2011.10.007

    Article  PubMed  Google Scholar 

  70. Friedrich-Rust M, Hadji-Hosseini H, Kriener S, et al. (2010) Transient elastography with a new probe for obese patients for non-invasive staging of non-alcoholic steatohepatitis. Eur Radiol 20(10):2390–2396. doi:10.1007/s00330-010-1820-9

    Article  PubMed  Google Scholar 

  71. Naveau S, Lamouri K, Pourcher G, et al. (2014) The diagnostic accuracy of transient elastography for the diagnosis of liver fibrosis in bariatric surgery candidates with suspected NAFLD. Obes Surg 24(10):1693–1701. doi:10.1007/s11695-014-1235-9

    Article  PubMed  Google Scholar 

  72. Yoneda M, Suzuki K, Kato S, et al. (2010) Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 256(2):640–647. doi:10.1148/radiol.10091662

    Article  PubMed  Google Scholar 

  73. Palmeri ML, Wang MH, Rouze NC, et al. (2011) Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 55(3):666–672. doi:10.1016/j.jhep.2010.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ochi H, Hirooka M, Koizumi Y, et al. (2012) Real-time tissue elastography for evaluation of hepatic fibrosis and portal hypertension in nonalcoholic fatty liver diseases. Hepatology 56(4):1271–1278. doi:10.1002/hep.25756

    Article  PubMed  Google Scholar 

  75. Friedrich-Rust M, Romen D, Vermehren J, et al. (2012) Acoustic radiation force impulse-imaging and transient elastography for non-invasive assessment of liver fibrosis and steatosis in NAFLD. Eur J Radiol 81(3):e325–e331. doi:10.1016/j.ejrad.2011.10.029

    Article  PubMed  Google Scholar 

  76. Guzman-Aroca F, Frutos-Bernal MD, Bas A, et al. (2012) Detection of non-alcoholic steatohepatitis in patients with morbid obesity before bariatric surgery: preliminary evaluation with acoustic radiation force impulse imaging. Eur Radiol 22(11):2525–2532. doi:10.1007/s00330-012-2505-3

    Article  CAS  PubMed  Google Scholar 

  77. Sirli R, Bota S, Sporea I, et al. (2013) Liver stiffness measurements by means of supersonic shear imaging in patients without known liver pathology. Ultrasound Med Biol 39(8):1362–1367. doi:10.1016/j.ultrasmedbio.2013.03.021

    Article  PubMed  Google Scholar 

  78. Sporea I, Bota S, Gradinaru-Tascau O, et al. (2014) Which are the cut-off values of 2D-shear wave elastography (2D-SWE) liver stiffness measurements predicting different stages of liver fibrosis, considering transient elastography (TE) as the reference method? Eur J Radiol 83(3):e118–e122. doi:10.1016/j.ejrad.2013.12.011

    Article  PubMed  Google Scholar 

  79. Muller M, Gennisson JL, Deffieux T, Tanter M, Fink M (2009) Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study. Ultrasound Med Biol 35(2):219–229. doi:10.1016/j.ultrasmedbio.2008.08.018

    Article  PubMed  Google Scholar 

  80. Gerber L, Kasper D, Fitting D, et al. (2015) Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease. Ultrasound Med Biol 41(9):2350–2359. doi:10.1016/j.ultrasmedbio.2015.04.014

    Article  PubMed  Google Scholar 

  81. Samir AE, Dhyani M, Vij A, et al. (2015) Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology 274(3):888–896. doi:10.1148/radiol.14140839

    Article  PubMed  Google Scholar 

  82. Sporea I, Sirli RL, Deleanu A, et al. (2011) Acoustic radiation force impulse elastography as compared to transient elastography and liver biopsy in patients with chronic hepatopathies. Ultraschall Med 32(Suppl 1):S46–S52. doi:10.1055/s-0029-1245360

    PubMed  Google Scholar 

  83. Goertz RS, Zopf Y, Jugl V, et al. (2010) Measurement of liver elasticity with acoustic radiation force impulse (ARFI) technology: an alternative noninvasive method for staging liver fibrosis in viral hepatitis. Ultraschall Med 31(2):151–155. doi:10.1055/s-0029-1245244

    Article  CAS  PubMed  Google Scholar 

  84. Karlas T, Pfrepper C, Troeltzsch M, Wiegand J, Keim V (2010) Acoustic radiation force impulse liver stiffness measurement: interlobe differences demand standardized examination procedures. Eur J Gastroenterol Hepatol 22(11):1387. doi:10.1097/MEG.0b013e32833caf8e

    Article  PubMed  Google Scholar 

  85. Mederacke I, Wursthorn K, Kirschner J, et al. (2009) Food intake increases liver stiffness in patients with chronic or resolved hepatitis C virus infection. Liver Int 29(10):1500–1506. doi:10.1111/j.1478-3231.2009.02100.x

    Article  PubMed  Google Scholar 

  86. Popescu A, Bota S, Sporea I, et al. (2013) The influence of food intake on liver stiffness values assessed by acoustic radiation force impulse elastography-preliminary results. Ultrasound Med Biol 39(4):579–584. doi:10.1016/j.ultrasmedbio.2012.11.013

    Article  PubMed  Google Scholar 

  87. Arena U, Vizzutti F, Corti G, et al. (2008) Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 47(2):380–384. doi:10.1002/hep.22007

    Article  CAS  PubMed  Google Scholar 

  88. Millonig G, Reimann FM, Friedrich S, et al. (2008) Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology 48(5):1718–1723. doi:10.1002/hep.22577

    Article  PubMed  Google Scholar 

  89. Millonig G, Friedrich S, Adolf S, et al. (2010) Liver stiffness is directly influenced by central venous pressure. J Hepatol 52(2):206–210. doi:10.1016/j.jhep.2009.11.018

    Article  PubMed  Google Scholar 

  90. Venkatesh SK, Ehman RL (2015) Magnetic resonance elastography of abdomen. Abdom Imaging 40(4):745–759. doi:10.1007/s00261-014-0315-6

    Article  PubMed  PubMed Central  Google Scholar 

  91. Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555. doi:10.1002/jmri.23731

    Article  PubMed  PubMed Central  Google Scholar 

  92. Singh S, Venkatesh SK, Wang Z, et al. (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13(3):440–451 e446. doi:10.1016/j.cgh.2014.09.046

  93. Guo Y, Parthasarathy S, Goyal P, et al. (2014) Magnetic resonance elastography and acoustic radiation force impulse for staging hepatic fibrosis: a meta-analysis. Abdom Imaging . doi:10.1007/s00261-014-0137-6

    Google Scholar 

  94. Godfrey EM, Patterson AJ, Priest AN, et al. (2012) A comparison of MR elastography and 31P MR spectroscopy with histological staging of liver fibrosis. Eur Radiol 22(12):2790–2797. doi:10.1007/s00330-012-2527-x

    Article  PubMed  Google Scholar 

  95. Hines CD, Bley TA, Lindstrom MJ, Reeder SB (2010) Repeatability of magnetic resonance elastography for quantification of hepatic stiffness. J Magn Reson Imaging 31(3):725–731. doi:10.1002/jmri.22066

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee DH, Lee JM, Han JK, Choi BI (2013) MR elastography of healthy liver parenchyma: normal value and reliability of the liver stiffness value measurement. J Magn Reson Imaging 38(5):1215–1223. doi:10.1002/jmri.23958

    Article  PubMed  Google Scholar 

  97. Venkatesh SK, Wang G, Teo LL, Ang BW (2014) Magnetic resonance elastography of liver in healthy Asians: normal liver stiffness quantification and reproducibility assessment. J Magn Reson Imaging 39(1):1–8. doi:10.1002/jmri.24084

    Article  PubMed  Google Scholar 

  98. Wang QB, Zhu H, Liu HL, Zhang B (2012) Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: a meta-analysis. Hepatology 56(1):239–247. doi:10.1002/hep.25610

    Article  PubMed  Google Scholar 

  99. Castera L, Foucher J, Bernard PH, et al. (2010) Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 51(3):828–835. doi:10.1002/hep.23425

    PubMed  Google Scholar 

  100. Bota S, Sporea I, Sirli R, et al. (2014) Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of Acoustic Radiation Force Impulse (ARFI) elastography—analysis of a cohort of 1,031 subjects. Eur J Radiol 83(2):268–272. doi:10.1016/j.ejrad.2013.11.019

    Article  PubMed  Google Scholar 

  101. Huwart L, Sempoux C, Vicaut E, et al. (2008) Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 135(1):32–40. doi:10.1053/j.gastro.2008.03.076

    Article  PubMed  Google Scholar 

  102. Ichikawa S, Motosugi U, Ichikawa T, et al. (2012) Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C. MRMS 11(4):291–297

    Article  PubMed  Google Scholar 

  103. Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL (2013) Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 268(2):411–419. doi:10.1148/radiol.13121193

    Article  PubMed  PubMed Central  Google Scholar 

  104. Venkatesh SK, Wang G, Lim SG, Wee A (2014) Magnetic resonance elastography for the detection and staging of liver fibrosis in chronic hepatitis B. Eur Radiol 24(1):70–78. doi:10.1007/s00330-013-2978-8

    Article  PubMed  Google Scholar 

  105. Yin M, Talwalkar JA, Glaser KJ, et al. (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207–1213.e1202. doi:10.1016/j.cgh.2007.06.012

  106. Wagner M, Corcuera-Solano I, Lo G, et al. (2017) Technical failure of MR elastography examinations of the liver: experience from a large single-center study. Radiology . doi:10.1148/radiol.2016160863

    Google Scholar 

  107. Wagner M, Besa C, Bou Ayache J, et al. (2016) Magnetic resonance elastography of the liver: qualitative and quantitative comparison of gradient echo and spin echo echoplanar imaging sequences. Invest Radiol 51(9):575–581. doi:10.1097/RLI.0000000000000269

    Article  PubMed  Google Scholar 

  108. Yin M, Talwalkar JA, Glaser KJ, et al. (2011) Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. Am J Roentgenol 197(1):64–70. doi:10.2214/AJR.10.5989

    Article  Google Scholar 

  109. Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B (2014) Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS ONE 9(5):e97355. doi:10.1371/journal.pone.0097355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254(1):47–66. doi:10.1148/radiol.09090021

    Article  PubMed  Google Scholar 

  111. Luciani A, Vignaud A, Cavet M, et al. (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249(3):891–899. doi:10.1148/radiol.2493080080

    Article  PubMed  Google Scholar 

  112. Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3):617–623. doi:10.1148/radiology.210.3.r99fe17617

    Article  CAS  PubMed  Google Scholar 

  113. Annet L, Peeters F, Abarca-Quinones J, et al. (2007) Assessment of diffusion-weighted MR imaging in liver fibrosis. J Magn Reson Imaging 25(1):122–128. doi:10.1002/jmri.20771

    Article  PubMed  Google Scholar 

  114. Taouli B, Tolia AJ, Losada M, et al. (2007) Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. Am J Roentgenol 189(4):799–806. doi:10.2214/AJR.07.2086

    Article  Google Scholar 

  115. Girometti R, Furlan A, Bazzocchi M, et al. (2007) Diffusion-weighted MRI in evaluating liver fibrosis: a feasibility study in cirrhotic patients. Radiol Med 112(3):394–408. doi:10.1007/s11547-007-0149-1

    Article  CAS  PubMed  Google Scholar 

  116. Dyvorne HA, Jajamovich GH, Bane O, et al. (2016) Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int 36(5):659–666. doi:10.1111/liv.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang Y, Ganger DR, Levitsky J, et al. (2011) Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. Am J Roentgenol 196(3):553–561. doi:10.2214/AJR.10.4580

    Article  Google Scholar 

  118. Chandarana H, Do RK, Mussi TC, et al. (2012) The effect of liver iron deposition on hepatic apparent diffusion coefficient values in cirrhosis. AJR Am J Roentgenol 199(4):803–808. doi:10.2214/ajr.11.7541

    Article  PubMed  Google Scholar 

  119. Dyvorne HA, Galea N, Nevers T, et al. (2013) Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters—a pilot study. Radiology 266(3):920–929. doi:10.1148/radiol.12120686

    Article  PubMed  PubMed Central  Google Scholar 

  120. Patel J, Sigmund EE, Rusinek H, et al. (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31(3):589–600. doi:10.1002/jmri.22081

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhang B, Liang L, Dong Y, et al. (2016) Intravoxel incoherent motion MR imaging for staging of hepatic fibrosis. PLoS ONE 11(1):e0147789. doi:10.1371/journal.pone.0147789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Chung SR, Lee SS, Kim N, et al. (2015) Intravoxel incoherent motion MRI for liver fibrosis assessment: a pilot study. Acta Radiol 56(12):1428–1436. doi:10.1177/0284185114559763

    Article  PubMed  Google Scholar 

  123. Ichikawa S, Motosugi U, Morisaka H, et al. (2015) MRI-based staging of hepatic fibrosis: comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography. J Magn Reson Imaging 42(1):204–210. doi:10.1002/jmri.24760

    Article  PubMed  Google Scholar 

  124. Parente DB, Paiva FF, Oliveira Neto JA, et al. (2015) Intravoxel incoherent motion diffusion weighted MR imaging at 3.0 T: assessment of steatohepatitis and fibrosis compared with liver biopsy in type 2 diabetic patients. PLoS ONE 10(5):e0125653. doi:10.1371/journal.pone.0125653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wu CH, Ho MC, Jeng YM, et al. (2015) Assessing hepatic fibrosis: comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US. Eur Radiol 25(12):3552–3559. doi:10.1007/s00330-015-3774-4

    Article  PubMed  Google Scholar 

  126. Jhaveri K, Cleary S, Audet P, et al. (2015) Consensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). Am J Roentgenol 204(3):498–509. doi:10.2214/ajr.13.12399

    Article  Google Scholar 

  127. Ringe KI, Husarik DB, Sirlin CB, Merkle EM (2010) Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol 195(1):13–28. doi:10.2214/ajr.10.4392

    Article  Google Scholar 

  128. Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73(1):137–142. doi:10.1016/j.ejrad.2008.09.036

    Article  PubMed  Google Scholar 

  129. Motosugi U, Ichikawa T, Oguri M, et al. (2011) Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 29(8):1047–1052. doi:10.1016/j.mri.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  130. Watanabe H, Kanematsu M, Goshima S, et al. (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging—preliminary observations. Radiology 259(1):142–150. doi:10.1148/radiol.10100621

    Article  PubMed  Google Scholar 

  131. Hope TA, Doherty A, Fu Y, et al. (2012) Gadolinium accumulation and fibrosis in the liver after administration of gadoxetate disodium in a rat model of active hepatic fibrosis. Radiology 264(2):423–427. doi:10.1148/radiol.12112453

    Article  PubMed  Google Scholar 

  132. Goshima S, Kanematsu M, Watanabe H, et al. (2012) Gd-EOB-DTPA-enhanced MR imaging: prediction of hepatic fibrosis stages using liver contrast enhancement index and liver-to-spleen volumetric ratio. J Magn Reson Imaging 36(5):1148–1153. doi:10.1002/jmri.23758

    Article  PubMed  Google Scholar 

  133. Ding Y, Rao S, Yang L, Chen C, Zeng M (2016) Comparison of the effect of region-of-interest methods using gadoxetic acid-enhanced MR imaging with diffusion-weighted imaging on staging hepatic fibrosis. Radiol Med 121(11):821–827. doi:10.1007/s11547-016-0669-7

    Article  PubMed  Google Scholar 

  134. Ding Y, Rao SX, Zhu T, et al. (2015) Liver fibrosis staging using T1 mapping on gadoxetic acid-enhanced MRI compared with DW imaging. Clin Radiol 70(10):1096–1103. doi:10.1016/j.crad.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  135. Park HS, Kim YJ, Yu MH, et al. (2014) Three-Tesla magnetic resonance elastography for hepatic fibrosis: comparison with diffusion-weighted imaging and gadoxetic acid-enhanced magnetic resonance imaging. World J Gastroenterol 20(46):17558–17567. doi:10.3748/wjg.v20.i46.17558

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kim H, Park SH, Kim EK, et al. (2014) Histogram analysis of gadoxetic acid-enhanced MRI for quantitative hepatic fibrosis measurement. PLoS ONE 9(12):e114224. doi:10.1371/journal.pone.0114224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Okada M, Murakami T, Yada N, et al. (2015) Comparison between T1 relaxation time of Gd-EOB-DTPA-enhanced MRI and liver stiffness measurement of ultrasound elastography in the evaluation of cirrhotic liver. J Magn Reson Imaging 41(2):329–338. doi:10.1002/jmri.24529

    Article  PubMed  Google Scholar 

  138. Choi YR, Lee JM, Yoon JH, Han JK, Choi BI (2013) Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol 48(8):607–613. doi:10.1097/RLI.0b013e318289ff8f

    Article  CAS  PubMed  Google Scholar 

  139. Noren B, Forsgren MF, Dahlqvist Leinhard O, et al. (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23(1):174–181. doi:10.1007/s00330-012-2583-2

    Article  PubMed  Google Scholar 

  140. Besa C, Bane O, Jajamovich G, Marchione J, Taouli B (2015) 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function. Magn Reson Imaging 33(9):1075–1082. doi:10.1016/j.mri.2015.06.013

    Article  PubMed  Google Scholar 

  141. Nassif A, Jia J, Keiser M, et al. (2012) Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology 264(3):741–750. doi:10.1148/radiol.12112061

    Article  PubMed  Google Scholar 

  142. Feier D, Balassy C, Bastati N, et al. (2016) The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis—a multiparametric approach. Eur Radiol 26(2):539–546. doi:10.1007/s00330-015-3830-0

    Article  PubMed  Google Scholar 

  143. Sheng RF, Wang HQ, Yang L, et al. (2017) Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance. Dig Liver Dis . doi:10.1016/j.dld.2017.02.006

    Google Scholar 

  144. Yang L, Ding Y, Rao S, et al. (2017) Staging liver fibrosis in chronic hepatitis B with T1 relaxation time index on gadoxetic acid-enhanced MRI: comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4. J Magn Reson Imaging 45(4):1186–1194. doi:10.1002/jmri.25440

    Article  PubMed  Google Scholar 

  145. Hagiwara M, Rusinek H, Lee VS, et al. (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging—initial experience. Radiology 246(3):926–934. doi:10.1148/radiol.2463070077

    Article  PubMed  Google Scholar 

  146. Chen BB, Hsu CY, Yu CW, et al. (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22(1):171–180. doi:10.1007/s00330-011-2249-5

    Article  PubMed  Google Scholar 

  147. Xie S, Sun Y, Wang L, et al. (2015) Assessment of liver function and liver fibrosis with dynamic Gd-EOB-DTPA-enhanced MRI. Acad Radiol 22(4):460–466. doi:10.1016/j.acra.2014.11.006

    Article  PubMed  Google Scholar 

  148. Sourbron S, Sommer WH, Reiser MF, Zech CJ (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263(3):874–883. doi:10.1148/radiol.12110337

    Article  PubMed  Google Scholar 

  149. Zhang H, Yang Q, Yu T, et al. (2017) Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats. J Magn Reson Imaging 45(3):741–750. doi:10.1002/jmri.25424

    Article  PubMed  Google Scholar 

  150. Cassinotto C, Feldis M, Vergniol J, et al. (2015) MR relaxometry in chronic liver diseases: comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur J Radiol 84(8):1459–1465. doi:10.1016/j.ejrad.2015.05.019

    Article  PubMed  Google Scholar 

  151. Guimaraes AR, Siqueira L, Uppal R, et al. (2016) T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 6(2):103–114. doi:10.21037/qims.2016.03.02

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bonekamp D, Bonekamp S, Geiger B, Kamel IR (2012) An elevated arterial enhancement fraction is associated with clinical and imaging indices of liver fibrosis and cirrhosis. J Comput Assist Tomogr 36(6):681–689. doi:10.1097/RCT.0b013e3182702ee3

    Article  PubMed  Google Scholar 

  153. Ronot M, Asselah T, Paradis V, et al. (2010) Liver fibrosis in chronic hepatitis C virus infection: differentiating minimal from intermediate fibrosis with perfusion CT. Radiology 256(1):135–142. doi:10.1148/radiol.10091295

    Article  PubMed  Google Scholar 

  154. Van Beers BE, Leconte I, Materne R, et al. (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. Am J Roentgenol 176(3):667–673. doi:10.2214/ajr.176.3.1760667

    Article  Google Scholar 

  155. Richter S, Mucke I, Menger MD, Vollmar B (2000) Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol 279(2):G454–G462

    CAS  PubMed  Google Scholar 

  156. Gulberg V, Haag K, Rossle M, Gerbes AL (2002) Hepatic arterial buffer response in patients with advanced cirrhosis. Hepatology 35(3):630–634. doi:10.1053/jhep.2002.31722

    Article  PubMed  Google Scholar 

  157. Varenika V, Fu Y, Maher JJ, et al. (2013) Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology 266(1):151–158. doi:10.1148/radiol.12112452

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zissen MH, Wang ZJ, Yee J, et al. (2013) Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. Am J Roentgenol 201(6):1204–1210. doi:10.2214/AJR.12.10039

    Article  Google Scholar 

  159. Wells ML, Moynagh MR, Carter RE, et al. (2017) Correlation of hepatic fractional extracellular space using gadolinium enhanced MRI with liver stiffness using magnetic resonance elastography. Abdom Radiol (NY) 42(1):191–198. doi:10.1007/s00261-016-0867-8

    Article  Google Scholar 

  160. Yoon JH, Lee JM, Klotz E, et al. (2015) Estimation of hepatic extracellular volume fraction using multiphasic liver computed tomography for hepatic fibrosis grading. Invest Radiol 50(4):290–296. doi:10.1097/rli.0000000000000123

    Article  PubMed  Google Scholar 

  161. Bandula S, Punwani S, Rosenberg WM, et al. (2015) Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 275(1):136–143. doi:10.1148/radiol.14141435

    Article  PubMed  Google Scholar 

  162. Guo SL, Su LN, Zhai YN, et al. (2017) The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis. Clin Radiol 72(3):242–246. doi:10.1016/j.crad.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  163. Silva AC, Morse BG, Hara AK, et al. (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046. doi:10.1148/rg.314105159

    Article  PubMed  Google Scholar 

  164. Lamb P, Sahani DV, Fuentes-Orrego JM, et al. (2015) Stratification of patients with liver fibrosis using dual-energy CT. IEEE Trans Med Imaging 34(3):807–815. doi:10.1109/TMI.2014.2353044

    Article  PubMed  Google Scholar 

  165. Lv P, Lin X, Gao J, Chen K (2012) Spectral CT: preliminary studies in the liver cirrhosis. Korean J Radiol 13(4):434–442. doi:10.3348/kjr.2012.13.4.434

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhao LQ, He W, Yan B, Wang HY, Wang J (2013) The evaluation of haemodynamics in cirrhotic patients with spectral CT. Br J Radiol 86(1028):20130228. doi:10.1259/bjr.20130228

    Article  PubMed  PubMed Central  Google Scholar 

  167. Claudon M, Dietrich CF, Choi BI, et al. (2013) Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver—update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 39(2):187–210. doi:10.1016/j.ultrasmedbio.2012.09.002

    Article  PubMed  Google Scholar 

  168. Ridolfi F, Abbattista T, Marini F, et al. (2007) Contrast-enhanced ultrasound to evaluate the severity of chronic hepatitis C. Dig Liver Dis 39(10):929–935. doi:10.1016/j.dld.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  169. Maruyama H, Matsutani S, Okugawa H, et al. (2006) Microbubble disappearance-time is the appropriate timing for liver-specific imaging after injection of Levovist. Ultrasound Med Biol 32(12):1809–1815

    Article  PubMed  Google Scholar 

  170. Li N, Ding H, Fan P, et al. (2010) Intrahepatic transit time predicts liver fibrosis in patients with chronic hepatitis B: quantitative assessment with contrast-enhanced ultrasonography. Ultrasound Med Biol 36(7):1066–1075. doi:10.1016/j.ultrasmedbio.2010.04.012

    Article  PubMed  Google Scholar 

  171. Lim AK, Taylor-Robinson SD, Patel N, et al. (2005) Hepatic vein transit times using a microbubble agent can predict disease severity non-invasively in patients with hepatitis C. Gut 54(1):128–133. doi:10.1136/gut.2003.030965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tang A, Kim TK, Heathcote J, et al. (2011) Does hepatic vein transit time performed with contrast-enhanced ultrasound predict the severity of hepatic fibrosis? Ultrasound Med Biol 37(12):1963–1969. doi:10.1016/j.ultrasmedbio.2011.09.010

    Article  PubMed  Google Scholar 

  173. Barry B, Buch K, Soto JA, et al. (2014) Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging. Magn Reson Imaging 32(1):84–90. doi:10.1016/j.mri.2013.04.006

    Article  PubMed  Google Scholar 

  174. Vicas C, Lupsor M, Socaciu M, Nedevschi S, Badea R (2012) Influence of expert-dependent variability over the performance of noninvasive fibrosis assessment in patients with chronic hepatitis C by means of texture analysis. Comput Math Methods Med 2012:346713. doi:10.1155/2012/346713

    Article  PubMed  Google Scholar 

  175. Yamada H, Ebara M, Yamaguchi T, et al. (2006) A pilot approach for quantitative assessment of liver fibrosis using ultrasound: preliminary results in 79 cases. J Hepatol 44(1):68–75. doi:10.1016/j.jhep.2005.08.009

    Article  PubMed  Google Scholar 

  176. Jirak D, Dezortova M, Taimr P, Hajek M (2002) Texture analysis of human liver. J Magn Reson Imaging 15(1):68–74

    Article  PubMed  Google Scholar 

  177. House MJ, Bangma SJ, Thomas M, et al. (2015) Texture-based classification of liver fibrosis using MRI. J Magn Reson Imaging 41(2):322–328. doi:10.1002/jmri.24536

    Article  PubMed  Google Scholar 

  178. Yu H, Buch K, Li B, et al. (2015) Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI. J Magn Reson Imaging 42(5):1259–1265. doi:10.1002/jmri.24898

    Article  PubMed  Google Scholar 

  179. Bahl G, Cruite I, Wolfson T, et al. (2012) Noninvasive classification of hepatic fibrosis based on texture parameters from double contrast-enhanced magnetic resonance images. J Magn Reson Imaging 36(5):1154–1161. doi:10.1002/jmri.23759

    Article  PubMed  PubMed Central  Google Scholar 

  180. Yokoo T, Wolfson T, Iwaisako K, et al. (2015) Evaluation of liver fibrosis using texture analysis on combined-contrast-enhanced magnetic resonance images at 3.0 T. BioMed Res Int 2015:387653. doi:10.1155/2015/387653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Wu Z, Matsui O, Kitao A, et al. (2015) Hepatitis C related chronic liver cirrhosis: feasibility of texture analysis of MR images for classification of fibrosis stage and necroinflammatory activity grade. PLoS ONE 10(3):e0118297. doi:10.1371/journal.pone.0118297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Kayaaltı Ö, Aksebzeci BH, Karahan İÖ, et al. (2014) Liver fibrosis staging using CT image texture analysis and soft computing. Appl Soft Comput 25:399–413

    Article  Google Scholar 

  183. Daginawala N, Li B, Buch K, et al. (2016) Using texture analyses of contrast enhanced CT to assess hepatic fibrosis. Eur J Radiol 85(3):511–517. doi:10.1016/j.ejrad.2015.12.009

    Article  PubMed  Google Scholar 

  184. Zhang X, Gao X, Liu BJ, et al. (2015) Effective staging of fibrosis by the selected texture features of liver: which one is better, CT or MR imaging? Comput Med Imaging Graph 46(Pt 2):227–236. doi:10.1016/j.compmedimag.2015.09.003

    Article  PubMed  Google Scholar 

  185. Farrar CT, DePeralta DK, Day H, et al. (2015) 3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. J Hepatol 63(3):689–696. doi:10.1016/j.jhep.2015.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fuchs BC, Wang H, Yang Y, et al. (2013) Molecular MRI of collagen to diagnose and stage liver fibrosis. J Hepatol 59(5):992–998. doi:10.1016/j.jhep.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhu B, Wei L, Rotile N, et al. (2017) Combined magnetic resonance elastography and collagen molecular magnetic resonance imaging accurately stage liver fibrosis in a rat model. Hepatology 65(3):1015–1025. doi:10.1002/hep.28930

    Article  CAS  PubMed  Google Scholar 

  188. Li F, Yan H, Wang J, et al. (2016) Non-invasively differentiating extent of liver fibrosis by visualizing hepatic integrin alphavbeta3 expression with an MRI modality in mice. Biomaterials 102:162–174. doi:10.1016/j.biomaterials.2016.06.026

    Article  PubMed  CAS  Google Scholar 

  189. Hatori A, Yui J, Xie L, et al. (2015) Utility of translocator protein (18 kDa) as a molecular imaging biomarker to monitor the progression of liver fibrosis. Sci Rep 5:17327. doi:10.1038/srep17327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Srinivasa Babu A, Wells ML, Teytelboym OM, et al. (2016) Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. Radiographics 36(7):1987–2006. doi:10.1148/rg.2016160042

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Michael R. Savino for assistance with images and Dr. Claude Sirlin and Dr. Venkateswar R. Surabhi, other members of the Society of Abdominal Radiology Disease Focus Panel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne M. Horowitz.

Ethics declarations

Funding

This study is not funded.

Conflict of interest

Richard L. Ehman: RLE and the Mayo Clinic have intellectual property rights and a financial interest in MRE technology. RLE serves as CEO and holds equity in Resoundant, Inc. Frank H. Miller MD has received a research grant from Siemens (no financial interest or funds). Michael A. Ohliger has received research support from Gilead pharmaceuticals. Bachir Taouli has received industry research grants from Guerbet and Bayer, is a consultant for Bioclinica, Median Technologies, and has received equipment support from Siemens. The other authors including Jeanne M. Horowitz, Sudhakar K. Venkatesh, Kartik Jhaveri, Patrick Kamath, Anthony E. Samir, Alvin C. Silva, Michael S. Torbenson, Michael L. Wells, and Benjamin Yeh declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horowitz, J.M., Venkatesh, S.K., Ehman, R.L. et al. Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol 42, 2037–2053 (2017). https://doi.org/10.1007/s00261-017-1211-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1211-7

Keywords

Navigation