Skip to main content

Advertisement

Log in

Complementary value of pre-treatment apparent diffusion coefficient in rectal cancer for predicting tumor recurrence

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the complementary prognostic value of pre-treatment tumor apparent diffusion coefficient (ADC) for the prediction of tumor recurrence in patients with rectal cancer.

Methods

From March 2012 to March 2013, a total of 128 patients with mid/lower rectal cancer who underwent pre-treatment rectal MRI were enrolled in this retrospective study. Two radiologists in consensus evaluated conventional imaging features (Cimg) in pre-treatment rectal MRI: tumor height from anal verge (≤5 cm vs. >5 cm), T stage (high vs. low), the presence or absence of lymph node metastasis, mesorectal fascia invasion, and extramural venous invasion. The mean tumor ADC values (TumorADC) based on high b-value (0, 1000 × 10−3 mm2/s) diffusion weight images were extracted. A multivariate Cox proportional hazard (CPH) regression was performed to evaluate the association of Cimg and TumorADC with the 3-year local recurrence (LR) rate. Predictive performance of two multivariate CPH models (Cimg only vs. Cimg + TumorADC) was compared using Harrell’s c index (HCI).

Results

TumorADC (Adjusted HR, 7.830; 95% CI 3.937–15.571) and high T stage (Adjusted HR, 8.039; 95% CI 2.405–26.874) were independently associated with the 3-year LR rate. The CPH model generated with T stage + TumorADC (HCI, 0.820; 95% CI 0.708–0.932) showed significantly higher HCI than that with T stage only (HCI, 0.742; 95% CI 0.594–0.889) (P = 0.009).

Conclusions

In patients with mid/lower rectal cancer, integrating TumorADC to Cimg increases predictive performance of the CPH model than that with Cimg alone for the prediction of LR within 3 years after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DWI:

Diffusion-weighted image

ADC:

Apparent diffusion coefficient

CR:

Complete remission

PCRT:

Preoperative chemoradiotherapy

MRI:

Magnetic resonance imaging

MRF:

Mesorectal fascia

ROI:

Region of interest

TumorADC :

Mean pre-treatment tumor ADC value

EMVI:

Extramural venous invasion

LN:

Lymph node

CT:

Computed tomography

dRFS:

Distant relapse-free survival

LR:

Local recurrence

Cimg :

Conventional imaging feature

CPH:

Cox proportional hazard

HR:

Hazard ratio

CI:

Confidence interval

HCI:

Harrell’s c index

AIC:

Akaike information criteria

References

  1. Barbaro B, Vitale R, Valentini V, et al. (2012) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(2):594–599. doi:10.1016/j.ijrobp.2011.07.017

    Article  PubMed  Google Scholar 

  2. Kim SH, Lee JM, Hong SH, et al. (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253(1):116–125. doi:10.1148/radiol.2532090027

    Article  PubMed  Google Scholar 

  3. Lambregts DM, Vandecaveye V, Barbaro B, et al. (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231. doi:10.1245/s10434-011-1607-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ippolito D, Monguzzi L, Guerra L, et al. (2012) Response to neoadjuvant therapy in locally advanced rectal cancer: assessment with diffusion-weighted MR imaging and 18FDG PET/CT. Abdom Imaging 37(6):1032–1040. doi:10.1007/s00261-011-9839-1

    Article  PubMed  Google Scholar 

  5. Ganten MK, Schuessler M, Bauerle T, et al. (2013) The role of perfusion effects in monitoring of chemoradiotherapy of rectal carcinoma using diffusion-weighted imaging. Cancer Imaging 13(4):548–556. doi:10.1102/1470-7330.2013.0045

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun YS, Zhang XP, Tang L, et al. (2010) Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 254(1):170–178. doi:10.1148/radiol.2541082230

    Article  PubMed  Google Scholar 

  7. Elmi A, Hedgire SS, Covarrubias D, et al. (2013) Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clinical Radiol 68(10):e524–e531. doi:10.1016/j.crad.2013.05.094

    Article  CAS  Google Scholar 

  8. Monguzzi L, Ippolito D, Bernasconi DP, et al. (2013) Locally advanced rectal cancer: value of ADC mapping in prediction of tumor response to radiochemotherapy. Eur J Radiol 82(2):234–240. doi:10.1016/j.ejrad.2012.09.027

    Article  PubMed  Google Scholar 

  9. Cho SH, Kim GC, Jang YJ, et al. (2015) Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiol 56(9):1042–1050. doi:10.1177/0284185114550193

    Article  PubMed  Google Scholar 

  10. Xie H, Sun T, Chen M, et al. (2015) Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer: a systematic review and meta-analysis. Medicine (Baltimore) 94(6):e517. doi:10.1097/MD.0000000000000517

    Article  CAS  Google Scholar 

  11. Giganti F, Orsenigo E, Esposito A, et al. (2015) Prognostic role of diffusion-weighted MR imaging for resectable gastric cancer. Radiology 276(2):444–452. doi:10.1148/radiol.15141900

    Article  PubMed  Google Scholar 

  12. Kurosawa J, Tawada K, Mikata R, et al. (2015) Prognostic relevance of apparent diffusion coefficient obtained by diffusion-weighted MRI in pancreatic cancer. J Magn Resonan Imaging: JMRI. doi:10.1002/jmri.24939

  13. Zhang Y, Liu X, Zhang Y, et al. (2015) Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases. Sci Rep 5:12242. doi:10.1038/srep12242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambrecht M, Van Calster B, Vandecaveye V, et al. (2014) Integrating pretreatment diffusion weighted MRI into a multivariable prognostic model for head and neck squamous cell carcinoma. Radiother Oncol 110(3):429–434. doi:10.1016/j.radonc.2014.01.004

    Article  PubMed  Google Scholar 

  15. Akashi M, Nakahusa Y, Yakabe T, et al. (2014) Assessment of aggressiveness of rectal cancer using 3-T MRI: correlation between the apparent diffusion coefficient as a potential imaging biomarker and histologic prognostic factors. Acta Radiol 55(5):524–531. doi:10.1177/0284185113503154

    Article  PubMed  Google Scholar 

  16. Curvo-Semedo L, Lambregts DM, Maas M, et al. (2012) Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging: JMRI 35(6):1365–1371. doi:10.1002/jmri.23589

    Article  PubMed  Google Scholar 

  17. Nasu K, Kuroki Y, Minami M (2012) Diffusion-weighted imaging findings of mucinous carcinoma arising in the ano-rectal region: comparison of apparent diffusion coefficient with that of tubular adenocarcinoma. Jpn J Radiol 30(2):120–127. doi:10.1007/s11604-011-0023-x

    Article  CAS  PubMed  Google Scholar 

  18. Nougaret S, Reinhold C, Mikhael HW, et al. (2013) The use of MR imaging in treatment planning for patients with rectal carcinoma: have you checked the “DISTANCE”? Radiology 268(2):330–344. doi:10.1148/radiol.13121361

    Article  PubMed  Google Scholar 

  19. Beets-Tan RG, Lambregts DM, Maas M, et al. (2013) Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 23(9):2522–2531. doi:10.1007/s00330-013-2864-4

    Article  PubMed  Google Scholar 

  20. Gollub MJ, Lakhman Y, McGinty K, et al. (2015) Does gadolinium-based contrast material improve diagnostic accuracy of local invasion in rectal cancer MRI? A multireader study. AJR Am J Roentgenol 204(2):W160–W167. doi:10.2214/AJR.14.12599

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gu J, Khong PL, Wang S, et al. (2011) Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol 13(5):1020–1028. doi:10.1007/s11307-010-0433-7

    Article  PubMed  Google Scholar 

  22. Sohn B, Lim JS, Kim H, et al. (2015) MRI-detected extramural vascular invasion is an independent prognostic factor for synchronous metastasis in patients with rectal cancer. Eur Radiol 25(5):1347–1355. doi:10.1007/s00330-014-3527-9

    Article  PubMed  Google Scholar 

  23. Kim JH, Beets GL, Kim MJ, Kessels AG, Beets-Tan RG (2004) High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size? Eur J Radiol 52(1):78–83. doi:10.1016/j.ejrad.2003.12.005

    Article  PubMed  Google Scholar 

  24. Brown G, Richards CJ, Bourne MW, et al. (2003) Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology 227(2):371–377. doi:10.1148/radiol.2272011747

    Article  PubMed  Google Scholar 

  25. Taylor FG, Quirke P, Heald RJ, et al. (2014) Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the MERCURY study. J Clin Oncol 32(1):34–43. doi:10.1200/JCO.2012.45.3258

    Article  PubMed  Google Scholar 

  26. Smith NJ, Shihab O, Arnaout A, Swift RI, Brown G (2008) MRI for detection of extramural vascular invasion in rectal cancer. AJR Am J Roentgenol 191(5):1517–1522. doi:10.2214/AJR.08.1298

    Article  PubMed  Google Scholar 

  27. Twelves C, Wong A, Nowacki MP, et al. (2005) Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 352(26):2696–2704. doi:10.1056/NEJMoa043116

    Article  CAS  PubMed  Google Scholar 

  28. Fried DV, Mawlawi O, Zhang L, et al. (2015) Stage III non-small cell lung cancer: prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors. Radiology 142920. doi:10.1148/radiol.2015142920

  29. Newson R (2010) Comparing the predictive power of survival models using Harrell’s c or Somers’ D. Stata J 10(3):339–358.

  30. Sala E, Micco M, Burger IA, et al. (2015) Complementary prognostic value of pelvic magnetic resonance imaging and whole-body fluorodeoxyglucose positron emission tomography/computed tomography in the pretreatment assessment of patients with cervical cancer. Int J Gynecol Cancer 25(8):1461–1467. doi:10.1097/IGC.0000000000000519

    Article  PubMed  Google Scholar 

  31. Sun Y, Tong T, Cai S, et al. (2014) Apparent Diffusion Coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer. PloS One 9(10):e109371. doi:10.1371/journal.pone.0109371

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bollineni VR, Kramer G, Liu Y, Melidis C, deSouza NM (2015) A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer. Cancer Treat Rev 41(6):496–502. doi:10.1016/j.ctrv.2015.03.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hyun Cho.

Ethics declarations

Funding

This study was not funded.

Conflicts of interest

All authors declare no existing conflict of interest.

Ethical approval

This retrospective study involving human was approved by the institutional research committee, complying with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was waived.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.J., Cho, S.H., Kim, G.C. et al. Complementary value of pre-treatment apparent diffusion coefficient in rectal cancer for predicting tumor recurrence. Abdom Radiol 41, 1237–1244 (2016). https://doi.org/10.1007/s00261-016-0648-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0648-4

Keywords

Navigation