Skip to main content

Advertisement

Log in

Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy

  • Special Section: Rectal Cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To determine the added value of qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging (DWI) in locally advanced rectal cancer (LARC) restaging after neoadjuvant chemo-radiotherapy (CRT).

Materials and Methods

A retrospective study was performed of 21 patients with LARC treated with CRT. All patients were evaluated with 1.5 T conventional magnetic resonance imaging (MRI) and DWI (0–1000 s/mm²) before starting therapy and after neoadjuvant CRT. All included patients underwent surgery after CRT: the histopathological evaluation of surgical specimens represented the reference standard for local staging after neoadjuvant therapy. The qualitative analysis was carried out by two operators in consensus, who reviewed the conventional MR image set [T1-weighted and T2-weighted morphological sequences + dynamic contrast-enhanced sequences (DCE)] and the combined set of conventional and DW images. For the quantitative analysis, the apparent diffusion coefficient (ADC) values were measured at each examination. For each lesion, the mean ADC value (ADCpre and ADCpost) and the ΔADC (ADCpost – ADCpre) were calculated, and values of the three groups of response [complete response (pCR), partial response (pPR), stable disease (pSD)] were compared.

Results

In LARC restaging, conventional MRI showed a sensitivity of 80% and a specificity of 50%, with a total diagnostic capacity of 71.40%, while by adding DWI sensitivity increased to 100%, specificity to 67%, and total diagnostic capacity to 90.40%. ΔADC correlates with treatment response and a cutoff of 1.35 × 10−3 mm²/s predicts the pCR with a sensitivity of 93.3% and a specificity of 83.3%.

Conclusions

Adding DWI to conventional sequences may improve MRI capability to evaluate tumor response to CRT. The quantitative DWI assessment is promising, but larger studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lezoche G, Baldarelli M, Guerrieri M, et al., A prospective randomized study with a 5-year minimum follow-up evaluation of transanal endoscopic microsurgery versus laparoscopic total mesorectal excision after neoadjuvant therapy, Surg Endosc, 2008;22:352-358.

    Article  CAS  PubMed  Google Scholar 

  2. Lezoche E, Baldarelli M, Lezoche G, et al., Randomized clinical trial of endoluminal locoregional resection versus laparoscopic total mesorectal excision for T2 rectal cancer after neoadjuvant therapy, Br J Surg, 2012;99:1211-1218.

    Article  CAS  PubMed  Google Scholar 

  3. Habr-Gama A, Perez MO, Nadalin W, et al., Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results, Ann Surg, 2004;240:711-717.

    PubMed  PubMed Central  Google Scholar 

  4. Marijnen CA, Kapiteijn E, van de Velde CJ, et al., Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial, J Clin Oncol, 2002;20:817-825.

    Article  CAS  PubMed  Google Scholar 

  5. Sartori CA, Sartori A, Vigna S, Occhipinti R, Baiocchi GL, Urinary and sexual disorders after laparoscopic TME for rectal cancer in males, J Gastrointest Surg, 2011;15:637-643.

    Article  PubMed  Google Scholar 

  6. Maas M, Nelemans PJ, Valentini V, et al., Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data, Lancet Oncol, 2010;11:835-844.

    Article  PubMed  Google Scholar 

  7. Perez RO, Habr-Gama A, Pereira GV, et al., Role of biopsies in patients with residual rectal cancer following neoadjuvant chemoradiation after downsizing: can they rule out persisting cancer?, Colorectal Dis, 2012;14:714-720.

    Article  CAS  PubMed  Google Scholar 

  8. Hanly AM, Ryan EM, Rogers AC, et al., Multicenter Evaluation of Rectal cancer ReImaging pOst Neoadjuvant (MERRION) Therapy, Ann Surg, 2014;259:723-727.

    Article  PubMed  Google Scholar 

  9. Huh JW, Park YA, Jung EJ, Lee KY, Sohn SK, Accuracy of endorectal ultrasonography and computed tomography for restaging rectal cancer after preoperative chemoradiation, J Am Coll Surg, 2008;207:7-12.

    Article  PubMed  Google Scholar 

  10. Curvo-Semedo L, Lambregts DM, Maas M, et al., Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness, J Magn Reson Imaging, 2012;35:1365-1371.

    Article  PubMed  Google Scholar 

  11. Kim SH, Lee JM, Hong SH, et al., Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy, Radiology, 2009;253:116-125.

    Article  PubMed  Google Scholar 

  12. Marouf RA, Tadros MY, Ahmed TY, Value of diffusion-weighted MR imaging in assessing response of neoadjuvant chemo and radiation therapy in locally advanced rectal cancer, Egyptian Journal of Radiology and Nuclear Medicine, 2015;46:553-561.

    Article  Google Scholar 

  13. Foti PV, Privitera G, Piana S, et al., Locally advanced rectal cancer: Qualitative and quantitative evaluation of diffusion-weighted MR imaging in the response assessment after neoadjuvant chemo-radiotherapy, Eur J Radiol Open, 2016;3:145-152.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bayram I, Bakir B, Kartal MGD, et al., The role of MRI with diffusion-weighted imaging in restaging rectal cancers after neoadjuvant chemoradiotherapy, S Afr J Rad, 2016;20(1):a967.

    Article  Google Scholar 

  15. The American Joint Commettee on Cancer, AJCC Cancer Staging Manual 8th edition, 2017.

  16. Szafer A, Zhong J, Anderson AW, Gore JC, Diffusion-weighted imaging in tissues: theoretical models, NMR Biomed, 1995;8:289-96.

    Article  CAS  PubMed  Google Scholar 

  17. Bassaneze T, Gonçalves JE, Faria JF, Palma RT, Waisberg J, Quantitative aspects of diffusion-weighted magnetic resonance imaging in rectal cancer response to neoadjuvant therapy, Radiol Oncol, 2017;51(3):270-276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jang KM, Kim SH, Choi D, et al., Pathological correlation with diffusion restriction on diffusion-weighted imaging in patients with pathological complete response after neoadjuvant chemoradiation therapy for locally advanced rectal cancer: preliminary results, Br J Radiol, 2012;85:e566-e572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pierredon-Foulongne MA, Nougaret S, Bibeau F, et al., Utility of reassessment after neoadjuvant therapy and difficulties in interpretation, Diagn Interv Imaging, 2014;95:495-503.

    Article  PubMed  Google Scholar 

  20. Xie H, Sun T, Chen M, et al., Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer, Medicine, 2015;94(6):e517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song I, Kim SH, Lee SJ, et al., Value of diffusion-weighted imaging in the detection of viable tumour after neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer: comparison with T2 weighted and PET/CT imaging, Br J Radiol, 2012;85:577-586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai G, Xu Y, Zhu J, et al., Diffusion-weighted magnetic resonance imaging for predicting the response of rectal cancer to neoadjuvant concurrent chemoradiation, World J Gastroenterol, 2013;19(33):5520-5527.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moffat BA, Chenevert TL, Lawrence TS, et al., Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response, Proc Natl Acad Sci USA, 2005;102:5524-5529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim SH, Lee JY, Lee JM, Han JK, Choi BI, Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer, Eur Radiol, 2011;21:987-995.

    Article  PubMed  Google Scholar 

  25. Lee EM, Hong YS, Kim KP, et al., Phase II study of preoperative chemoradiation with S-1 plus oxaliplatin in patients with locally advanced rectal cancer, Cancer Sci, 2013;104:111-115.

    Article  CAS  PubMed  Google Scholar 

  26. Curvo-Semedo L, Lambregts DMJ, Maas M, et al., Rectal Cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy - Conventional MR volumetry versus diffusion-weighted MR imaging, Radiology, 2011;260:734-743.

    Article  PubMed  Google Scholar 

  27. Dzik-Jurasz A, Domenig C, George M, et al., Diffusion MRI for prediction of response of rectal cancer to chemoradiation, Lancet, 2002;360:307-308.

    Article  PubMed  Google Scholar 

  28. Koh DM, Collins DJ, Diffusion-weighted MRI in the body: applications and challenges in oncology, Am J Roentgenol, 2007;188:1622-1635.

    Article  Google Scholar 

  29. Harrison L, Blackwell K, Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?, Oncologist, 2004;9:31-40.

    Article  PubMed  Google Scholar 

  30. Jung SH, Heo SH, Kim JW, et al., Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging, J Magn Reson Imaging, 2012;35:110-116.

    Article  PubMed  Google Scholar 

  31. Petrelli F, Sgroi G, Sarti E, Barni S, Increasing the interval between neoadjuvant chemoradiotherapy and surgery in rectal cancer: a meta-analysis of published studies, Ann Surg, 2016;263:458-464.

    Article  PubMed  Google Scholar 

  32. Probst CT, Becerra AZ, Aquina CT, et al., Extended intervals after neoadjuvant therapy in locally advanced rectal cancer: the key to improved tumor response and potential organ preservation, J Am Coll Surg, 2015;221(2):430-440.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sloothaak DA, Geijsen DE, van Leersum NJ, et al., Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer, Br J Surg, 2013;100:933-939.

    Article  CAS  PubMed  Google Scholar 

  34. Joye I, Debucquoy A, Deroose C, et al., Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer, Radiother Oncol, 2017;124(1):104-109.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eisenhauer EA, Therasse P, Bogaerts J, et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1), Eur J Cancer, 2009;45:228-247.

  36. Xiao J, Tan Y, Li W, et al., Tumor volume reduction rate is superior to RECIST for predicting the pathological response of rectal cancer treated with neoadjuvant chemoradiation: results from a prospective study, Oncol Lett, 2015;9(6):2680-2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim YC, Lim JS, Keum KC, et al., Comparison of diffusion-weighted MRI and MR volumetry in the evaluation of early treatment outcomes after preoperative chemoradiotherapy for locally advanced rectal cancer, J Magn Reson Imaging, 2011; 34(3):570-576.

    Article  PubMed  Google Scholar 

  38. Ha HI, Kim AY, Yu CS, Park SH, Ha HK, Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy, Eur Radiol, 2013;23(12):3345-3353.

    Article  PubMed  Google Scholar 

  39. Nougaret S, Vargas HA, Lakhman Y, et al., Intravoxel Incoherent Motion histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: initial experience and comparison between single-section and volumetric analyses, Radiology, 2016;280(2):446-454.

    Article  PubMed  Google Scholar 

  40. Kim SH, Lee JM, Gupta SN, Han JK, Choi BI, Dynamic contrast enhancement MRI to evaluate the therapaeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer, J Magn Reson Imaging, 2014;40(3):730-737.

    Article  PubMed  Google Scholar 

  41. Intven M, Monninkhof EM, Reerink O, Philippens ME, Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer, Acta Oncol, 2015;27:1-8.

    Google Scholar 

  42. Nie K, Shi L, Chen Q, et al., Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI, Clin Cancer Res, 2016;22(21):5256-5264.

    Article  PubMed  Google Scholar 

  43. Lambregts DMJ, Maas M, Riedl RG, et al., Value of ADC measurement for nodal staging after chemoradiation in locally advanced rectal cancer - a per lesion validation study, Eur Radiol, 2010;21:265-273.

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Heeswijk MM, Lambregts DMJ, Palm WM, et al., DWI for assessment of rectal cancer nodes after chemoradiotherapy: is the absence of nodes at DWI proof of a negative nodal status?, Am J Roentgenol, 2017;208(3):w79-w84.

    Article  Google Scholar 

  45. Lahaye MJ, Engelen SM, Kessels AG, et al., USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria, Radiology, 2008;246:804-811.

    Article  PubMed  Google Scholar 

  46. Heijnen LA, Lambregts DMJ, Martens MH, et al., Performance of gadofosveset-enhanced MRI for staging rectal cancer nodes: can the initial promising results be reproduced?, Eur Radiol, 2014;24:371-379.

    Article  PubMed  Google Scholar 

  47. Blazic IM, Lilic GB, Gajic MM, Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy: comparison of three methods of positioning region of interest for ADC measurements at diffusion-weighted MR imaging, Radiology, 2017;282(2):418-428.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Napoletano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napoletano, M., Mazzucca, D., Prosperi, E. et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted magnetic resonance imaging in restaging after neoadjuvant chemo-radiotherapy. Abdom Radiol 44, 3664–3673 (2019). https://doi.org/10.1007/s00261-019-02012-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02012-4

Keywords

Navigation