Skip to main content

Advertisement

Log in

Brachytherapy at the nanoscale with protein functionalized and intrinsically radiolabeled [169Yb]Yb2O3 nanoseeds

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy.

Methods

169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model.

Results

The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed.

Conclusions

These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31:100–10. https://doi.org/10.1093/carcin/bgp263.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  4. Cheng T, Peng R, Qu A, Wang H. High-dose rate endorectal brachytherapy for rectal cancer: a state-of-the-art review. Cancer Sci. 2023. https://doi.org/10.1111/cas.15959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ladbury C, Harkenrider M, Taunk N, Fisher C, Mayadev J, Venkat P, et al. A practical guide to hybrid interstitial/intracavitary brachytherapy for locally-advanced cervical cancer. Brachytherapy. 2023. https://doi.org/10.1016/j.brachy.2023.07.001.

    Article  PubMed  Google Scholar 

  6. Mourtada F, Tomiyoshi K, Sims-Mourtada J, Mukai-Sasaki Y, Yagihashi T, Namiki Y, et al. Actinium-225 targeted agents: where are we now? Brachytherapy. 2023;22(6):697–708. https://doi.org/10.1016/j.brachy.2023.06.228.

  7. Wang W, Wang T, Liu Z, He J, Sun X, Zhong W, et al. Practice patterns of adjuvant radiotherapy in women with stage I to II endometrial carcinoma: a real-world multi-institutional analysis in China. BMC Womens Health. 2023;23:417. https://doi.org/10.1186/s12905-023-02548-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seniwal B, Thipe VC, Singh S, Fonseca TCF, Freitas de Freitas L. Recent advances in brachytherapy using radioactive nanoparticles: an alternative to seed-based brachytherapy. Front Oncol. 2021;11:766407. https://doi.org/10.3389/fonc.2021.766407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laprise-Pelletier M, Simão T, Fortin MA. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv Healthc Mater. 2018;7:e1701460. https://doi.org/10.1002/adhm.201701460.

    Article  CAS  PubMed  Google Scholar 

  10. Ehlerding EB, Cai W. Smaller agents for larger therapeutic indices: nanoscale brachytherapy with 177Lu-labeled gold nanoparticles. J Nucl Med. 2016;57:834–5. https://doi.org/10.2967/jnumed.116.173278.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Sheng J, Zhai F, Wang X, Chen L, Shi C, et al. Pioneering iodine-125-labeled nanoscale covalent organic frameworks for brachytherapy. Bioconjug Chem. 2021;32:755–62. https://doi.org/10.1021/acs.bioconjchem.1c00040.

    Article  CAS  PubMed  Google Scholar 

  12. Chakravarty R, Chakraborty S, Guleria A, Shukla R, Kumar C, Vimalnath Nair KV, et al. Facile one-pot synthesis of intrinsically radiolabeled and cyclic RGD conjugated 199Au nanoparticles for potential use in nanoscale brachytherapy. Ind Eng Chem Res. 2018;57:14337–46. https://doi.org/10.1021/acs.iecr.8b02526.

    Article  CAS  Google Scholar 

  13. Yook S, Cai Z, Lu Y, Winnik MA, Pignol JP, Reilly RM. Intratumorally injected 177Lu-labeled gold nanoparticles: gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J Nucl Med. 2016;57:936–42. https://doi.org/10.2967/jnumed.115.168906.

    Article  CAS  PubMed  Google Scholar 

  14. Pellico J, Gawne PJ, de Rosales RTM. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021;50:3355–423. https://doi.org/10.1039/d0cs00384k.

    Article  CAS  PubMed  Google Scholar 

  15. Chakravarty R, Goel S, Dash A, Cai W. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Q J Nucl Med Mol Imaging. 2017;61:181–204. https://doi.org/10.23736/s1824-4785.17.02969-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hopfensperger KM, Adams Q, Kim Y, Wu X, Xu W, Patwardhan K, et al. Needle-free cervical cancer treatment using helical multishield intracavitary rotating shield brachytherapy with the 169Yb Isotope. Med Phys. 2020;47:2061–71. https://doi.org/10.1002/mp.14101.

    Article  CAS  PubMed  Google Scholar 

  17. Safaeipour E, Poorbaygi H, Jabbari I, Sheibani S. Evaluation of dosimetric functions for a new 169Yb HDR brachytherapy source. J Appl Clin Med Phys. 2021;22:82–93. https://doi.org/10.1002/acm2.13347.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taheri ME, Poorbaygi H, Hadadi A, Sheibani S. Dosimetry investigation of a prototype of 169Yb seed brachytherapy for use in circular stapler. Phys Eng Sci Med. 2021;44:525–34. https://doi.org/10.1007/s13246-021-01004-3.

    Article  PubMed  Google Scholar 

  19. Reynoso FJ, Munro Iii JJ, Cho SH. Technical note: Monte Carlo calculations of the AAPM TG-43 brachytherapy dosimetry parameters for a new titanium-encapsulated Yb-169 source. J Appl Clin Med Phys. 2017;18:193–9. https://doi.org/10.1002/acm2.12111.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chakravarty R, Guleria A, Jadhav S, Kumar C, Debnath AK, Sarma HD, et al. Bioinspired synthesis of intrinsically 177Lu-labeled hybrid nanoparticles for potential cancer therapy. Ind Eng Chem Res. 2020;59:22492–500. https://doi.org/10.1021/acs.iecr.0c03910.

    Article  CAS  Google Scholar 

  21. Chakravarty R, Shetty P, Nair KV, Rajeswari A, Jagadeesan K, Sarma HD, et al. Reactor produced [64Cu] CuCl2 as a PET radiopharmaceutical for cancer imaging: from radiochemistry laboratory to nuclear medicine clinic. Ann Nucl Med. 2020;34:899–910.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Chen F, Turker MZ, Ma K, Zanzonico P, Gallazzi F, et al. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials. 2020;241:119858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prasad N, Thombare N, Sharma S, Kumar S. Gum arabic–A versatile natural gum: a review on production, processing, properties and applications. Ind Crops Prod. 2022;187:115304.

    Article  CAS  Google Scholar 

  24. Han J, Chen F, Gao C, Zhang Y, Tang X. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum Arabic nanoparticles. Int J Biol Macromol. 2020;157:202–11.

    Article  CAS  PubMed  Google Scholar 

  25. Sharkawy A, Barreiro MF, Rodrigues AE. Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions. Carbohyd Polym. 2019;224:115190.

    Article  Google Scholar 

  26. Gruber JB, Chirico RD, Westrum EF Jr. Correlation of spectral and heat-capacity Schottky contributions for Dy2O3, Er2O3, and Yb2O3. J Chem Phys. 1982;76:4600–5.

    Article  CAS  Google Scholar 

  27. Jinqiu Y, Lei C, Huaqiang H, Shihong Y, Yunsheng H, Hao W. Raman spectra of RE2O3 (RE= Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis. J Rare Earths. 2014;32:1–4.

    Article  Google Scholar 

  28. Pandey SD, Samanta K, Singh J, Sharma ND, Bandyopadhyay A. Anharmonic behavior and structural phase transition in Yb2O3. AIP Adv. 2013;3: 122123.

  29. Piz M, Dulian P, Filipek E, Wieczorek-Ciurowa K, Kochmanski P. Characterization of phases in the V2O5–Yb2O3 system obtained by high-energy ball milling and high-temperature treatment. J Mater Sci. 2018;53:13491–500.

    Article  CAS  Google Scholar 

  30. Muthulakshmi V, Kumar P, Sundrarajan M. Green synthesis of Ionic liquid mediated Ytterbium oxide nanoparticles by Andrographis Paniculata leaves extract for structural, morphological and biomedical applications. J Environ Chem Eng. 2021;9:105270.

    Article  CAS  Google Scholar 

  31. Ibekwe CA, Oyatogun GM, Esan TA, Oluwasegun KM. Synthesis and characterization of chitosan/gum arabic nanoparticles for bone regeneration. Am J Mater Sci Eng. 2017;5:28–36.

  32. Bashir M, Haripriya S. Assessment of physical and structural characteristics of almond gum. Int J Biol Macromol. 2016;93:476–82.

    Article  CAS  PubMed  Google Scholar 

  33. Lu D-Y, Wei X, Cai Q. Mixed valence states of Yb3+/Yb2+ in low-loss (Ba1− xNdx)(Ti1− xYbx) O3 dielectric ceramics. J Alloy Compd. 2021;884: 161049.

    Article  CAS  Google Scholar 

  34. Ohno Y. XPS studies of the intermediate valence state of Yb in (YbS) 1.25 CrS2. J Electron Spectros Relat Phenomena. 2008;165:1–4.

    Article  CAS  Google Scholar 

  35. Park K-W, Ahn S, Lim S-H, Jin MH, Song J, Yun S-Y, et al. Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells. Appl Surf Sci. 2016;364:573–8.

    Article  CAS  Google Scholar 

  36. Smith M, Scudiero L, Espinal J, McEwen J-S, Garcia-Perez M. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon. 2016;110:155–71.

    Article  CAS  Google Scholar 

  37. Dhenadhayalan N, Mythily R, Kumaran R. Fluorescence spectral studies of gum Arabic: multi-emission of Gum Arabic in aqueous solution. J Lumin. 2014;155:322–9.

    Article  CAS  Google Scholar 

  38. Gakamskya D, Gakamskyb A. Intrinsic fluorescence of proteins as a medical diagnostic tool. Spectrosc Eur. 2017;29:6.

    Google Scholar 

  39. Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. Am J Nucl Med Mol Imaging. 2021;11:443–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Bar-Ness D, Si-Mohamed S, Coulon P, Blevis I, Douek P, et al. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep. 2018;8:12119. https://doi.org/10.1038/s41598-018-30570-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spahn I, Takács S, Shubin YN, Tárkányi F, Coenen HH, Qaim SM. Cross-section measurement of the 169Tm(p, n) reaction for the production of the therapeutic radionuclide 169Yb and comparison with its reactor-based generation. Appl Radiat Isot. 2005;63:235–9. https://doi.org/10.1016/j.apradiso.2005.03.006.

    Article  CAS  PubMed  Google Scholar 

  42. Tatari M, Goudarzi P, Naik H. Study of the accelerator production of 169Yb radioisotope via various particles nuclear reactions. J Radioanal Nucl Chem. 2021;327:525–32. https://doi.org/10.1007/s10967-020-07515-9.

    Article  CAS  Google Scholar 

  43. Manual for reactor produced radioisotopes: international atomic energy agency. 2003 (IAEA-TECDOC-1340) Available online at: https://www.iaea.org/publications/6407/manual-for-reactor-produced-radioisotopes. Accessed 1 Dec 2023.

  44. Gonçalves JP, da Cruz AF, Nunes ÁM, Meneghetti MR, de Barros HR, Borges BS, et al. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas. Int J Biol Macromol. 2021;185:551–61. https://doi.org/10.1016/j.ijbiomac.2021.06.172.

    Article  CAS  PubMed  Google Scholar 

  45. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep. 2020;10:17808. https://doi.org/10.1038/s41598-020-71175-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moeendarbari S, Tekade R, Mulgaonkar A, Christensen P, Ramezani S, Hassan G, et al. Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci Rep. 2016;6:20614. https://doi.org/10.1038/srep20614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR, et al. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci U S A. 2012;109:12426–31. https://doi.org/10.1073/pnas.1121174109.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bentivoglio V, Nayak P, Varani M, Lauri C, Signore A. Methods for radiolabeling nanoparticles (part 3): therapeutic use. Biomolecules. 2023;13:241. https://doi.org/10.3390/biom13081241.

  49. Ni D, Jiang D, Ehlerding EB, Huang P, Cai W. Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications. Acc Chem Res. 2018;51:778–88. https://doi.org/10.1021/acs.accounts.7b00635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90. https://doi.org/10.1039/c3cs60304k.

    Article  CAS  PubMed  Google Scholar 

  51. Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, et al. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. J Nucl Med. 2013;54:111–6. https://doi.org/10.2967/jnumed.112.106609.

    Article  CAS  PubMed  Google Scholar 

  52. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater. 2014;26:5119–23. https://doi.org/10.1002/adma.201401372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patra S, Kancharlapalli S, Chakraborty A, Singh K, Kumar C, Guleria A, et al. Chelator-free radiolabeling with theoretical insights and preclinical evaluation of citrate-functionalized hydroxyapatite nanospheres for potential use as radionanomedicine. Ind Eng Chem Res. 2023;62:3194–205. https://doi.org/10.1021/acs.iecr.2c04378.

    Article  CAS  Google Scholar 

  54. LuengoMorato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent advances in multimodal molecular imaging of cancer mediated by hybrid magnetic nanoparticles. Polymers (Basel). 2021;13:2989. https://doi.org/10.3390/polym13172989.

    Article  CAS  Google Scholar 

  55. Jennings LE, Long NJ. ‘Two is better than one’--probes for dual-modality molecular imaging. Chem Commun (Camb). 2009;24:3511–24. https://doi.org/10.1039/b821903f.

  56. Li M, Wei W, Barnhart TE, Jiang D, Cao T, Fan K, et al. ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2021;48:2737–48. https://doi.org/10.1007/s00259-021-05216-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally responsive nanomaterials for activatable multimodal imaging of cancer. Adv Healthc Mater. 2021;10:e2000690. https://doi.org/10.1002/adhm.202000690.

    Article  CAS  PubMed  Google Scholar 

  58. Dong YC, Kumar A, Rosario-Berríos DN, Si-Mohamed S, Hsu JC, Nieves LM, et al. Ytterbium nanoparticle contrast agents for conventional and spectral photon-counting CT and their applications for hydrogel imaging. ACS Appl Mater Interfaces. 2022;14:39274–84. https://doi.org/10.1021/acsami.2c12354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu W, Hu J, Guo W, Chen J, Liang S, Qian W, et al. Usage of Yb(OH)CO3 nanoparticles-based computed tomography image in the prediction model of lung biopsy pneumothorax. Cell Mol Biol (Noisy-le-grand). 2022;68:258–69. https://doi.org/10.14715/cmb/2022.68.3.29.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Bhabha Atomic Research Centre (BARC), the National Institutes of Health (P30 CA014520 and T32 CA009206), and the University of Wisconsin-Madison. The authors from BARC are grateful to Dr. P. K. Mohapatra, Associate Director, Radiochemistry and Isotope Group, BARC, Dr. Sandip Basu, Head, Radiation Medicine Centre (Medical), BARC and Dr. Tapas Das, Head, Radiopharmaceuticals Division, BARC for their support to this work. Dr. A.K. Debnath, Technical Physics Division, BARC, is acknowledged for providing the XPS data. The Sophisticated Analytical Instrumentation Facility of the Indian Institute of Technology Bombay is gratefully acknowledged for the HRTEM analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibo Cai or Rubel Chakravarty.

Ethics declarations

Ethics approval

All animal studies were performed according to the guidelines of the Animal Care and Use Committee of the Bhabha Atomic Research Centre, India.

Conflict of interest

Weibo Cai declares conflict of interest with the following corporations: Actithera, Inc., Rad Source Technologies, Inc., Portrai, Inc., rTR Technovation Corporation, and Four Health Global Pharmaceuticals Inc. All other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3621 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Patra, S., Younis, M.H. et al. Brachytherapy at the nanoscale with protein functionalized and intrinsically radiolabeled [169Yb]Yb2O3 nanoseeds. Eur J Nucl Med Mol Imaging 51, 1558–1573 (2024). https://doi.org/10.1007/s00259-024-06612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-024-06612-1

Keywords

Navigation