Skip to main content

Advertisement

Log in

National Cancer Institute support for targeted alpha-emitter therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Radiopharmaceutical targeted therapy (RPT) has been studied for decades; however, recent clinical trials demonstrating efficacy have helped renewed interest in the modality.

Methods

This article reviews National Cancer Institute (NCI)’s support of RPT through communication via workshops and interest groups, through funding extramural programs in academia and small business, and through intramural research, including preclinical and clinical studies.

Results

NCI has co-organized workshops and organized interest groups on RPT and RPT dosimetry to encourage the community and facilitate rigorous preclinical and clinical studies. NCI has been supporting RPT research through various mechanisms. Research has been funded through peer-reviewed NCI Research and Program Grants (RPG) and NCI Small Business Innovation Research (SBIR) Development Center, which funds small business-initiated projects, some of which have led to clinical trials. The NCI Cancer Therapy Evaluation Program (CTEP)’s Radiopharmaceutical Development Initiative supports RPT in NCI-funded clinical trials, including Imaging and Radiation Oncology Core (IROC) expertise in imaging QA and dosimetry procedures. Preclinical targeted a-emitter therapy (TAT) research at the NCI’s intramural program is ongoing, building on foundational work dating back to the 1980s. Ongoing “bench-to-bedside” efforts leverage the unique infrastructure of the National Institutes of Health’s (NIH) Clinical Center.

Conclusion

Given the great potential of RPT, our goal is to continue to encourage its development that will generate the high-quality evidence needed to bring this multidisciplinary treatment to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are from public databases.

Code availability

Not applicable.

References

  1. National Cancer Institute Overview and Mission. https://www.cancer.gov/about-nci/overview#mission-statement. Accessed 16 June 2021.

  2. Shimoni A, Avivi I, Rowe JM, Yeshurun M, Levi I, Or R, et al. A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer. 2012;118(19):4706–14.

    Article  CAS  Google Scholar 

  3. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-LineIndolent trial. J Clin Oncol. 2013;31(16):1977–83.

    Article  CAS  Google Scholar 

  4. Leahy MF, Seymour JF, Hicks RJ, Turner JH. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24(27):4418–25.

    Article  CAS  Google Scholar 

  5. Green DJ, Press OW. Whither radioimmunotherapy: to be or not to be? Cancer Res. 2017;77(9):2191–6.

    Article  CAS  Google Scholar 

  6. Fahey F, Zukotynski K, Capala J, Knight N. Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med. 2014;55(2):337–48.

    Article  Google Scholar 

  7. Fahey F, Zukotynski K, Jadvar H, Capala J. Proceedings of the second NCI-SNMMI workshop on targeted radionuclide therapy. J Nucl Med. 2015;56(7):1119–29.

    Article  Google Scholar 

  8. New Frontiers in Characterizing Biological Systems, Report from the May 2009 Workshop. https://genomicscience.energy.gov/characterization/NewFrontiersinCharacterization_DOE-SC-0121_200dpi.pdf. Accessed 16 June 2021.

  9. National Research Council (US) and Institute of Medicine (US) Committee on State of the Science of Nuclear Medicine. Advancing nuclear medicine through innovation. National Academies Press (US); 2007. https://doi.org/10.17226/11985.

  10. Workshop on The Nation’s Needs for Isotopes: Present and Future; August 5–7, 2008, Rockville, Maryland. USDOE Office of Science (SC) (United States); 2008; https://www.osti.gov/servlets/purl/1298937. Accessed 16 June 2021. 

  11. Roncali E, Capala J, Benedict SH, Akabani G, Bednarz B, Bhadrasain V, et al. Overview of the First NRG-NCI Workshop on Dosimetry of Systemic Radiopharmaceutical Therapy (RPT). J Nucl Med. 2021;62(8):1133-9.

  12. Canaria CA, Lisa Yeom M, Capala J, Narayanan D. Proceedings of the NCI SBIR workshop on molecularly targeted radionuclide therapy. J Nucl Med. 2018;59(6):13n-n14.

    PubMed  CAS  Google Scholar 

  13. Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Román U, Eriksson B, et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56(2):177–82.

    Article  CAS  Google Scholar 

  14. Garske-Román U, Sandström M, Fröss Baron K, Lundin L, Hellman P, Welin S, et al. Prospective observational study of (177)Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45(6):970–88.

    Article  CAS  Google Scholar 

  15. St James S, Bednarz B, Benedict S, Buchsbaum JC, Dewaraja Y, Frey E, et al. Current Status of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):891–901.

    Article  Google Scholar 

  16. Xiao Y, Roncali E, Hobbs R, James SS, Bednarz B, Benedict S, et al. Toward individualized voxel-level dosimetry for radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):902–4.

    Article  Google Scholar 

  17. Divgi C, Carrasquillo JA, Meredith R, Seo Y, Frey EC, Bolch WE, et al. Overcoming barriers to radiopharmaceutical therapy (rpt): an overview from the NRG-NCI working group on dosimetry of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):905–12.

    Article  Google Scholar 

  18. Zakeri K, Narayanan D, Evans G, Prasanna P, Buchsbaum JC, Vikram B, et al. Advancing Targeted radionuclide therapy through the National Cancer Institute’s Small Business Innovation Research Pathway. J Nucl Med. 2019;60(1):41–9.

    Article  CAS  Google Scholar 

  19. NIH RePORTER. https://reporter.nih.gov/. Accessed 16 June 2021.

  20. NCI Cancer Therapy Evaluation Program (CTEP). https://ctep.cancer.gov/default.htm. Accessed 16 June 2021.

  21. NCI Division of Cancer Treatment and Diagnosis (DCTD). https://dctd.cancer.gov/. Accessed 16 June 2021.

  22. NRG Oncology Radiopharmaceutical Therapy - Contouring Atlases, Templates & Tools. https://www.nrgoncology.org/About-Us/Center-for-Innovation-in-Radiation-Oncology/Radiopharmaceutical-Therapy. Accessed 16 June 2021.

  23. NCI SBIR Impact Study. https://sbir.cancer.gov/impact. Accessed 16 June 2021.

  24. NCI SBIR/STTR 1998–2018 National Economics Impacts Report. https://sbir.cancer.gov/sites/default/files/documents/NCI_SBIR_ImpactStudy_FullReport_2018.pdf. Accessed 16 June 2021.

  25. NCI Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Program Policy Directive 2019. https://www.sbir.gov/sites/default/files/SBIR-STTR_Policy_Directive_2019.pdf Accessed 16 June 2021.

  26. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). https://www.nccn.org/guidelines/category_1Accessed 16 June 2021.

  27. Ishiguro T, Sugimoto M, Kinoshita Y, Miyazaki Y, Nakano K, Tsunoda H, et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res. 2008;68(23):9832–8.

    Article  CAS  Google Scholar 

  28. Kelada OJ, Gutsche NT, Bell M, Berman RM, Baidoo KE, Warner BM, et al. ImmunoPET as stoichiometric sensor for glypican-3 in models of hepatocellular carcinoma. bioRxiv. 2020. https://doi.org/10.1101/2020.01.31.926972.

  29. Bell MM, Gutsche NT, King AP, Baidoo KE, Kelada OJ, Choyke PL, et al. Glypican-3-targeted alpha particle therapy for hepatocellular carcinoma. Molecules. 2020;26(1):4.

    Article  CAS  Google Scholar 

  30. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson D, et al. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorganic Chemistry. 1986;25(16):2772–81.

    Article  CAS  Google Scholar 

  31. Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.

    Article  CAS  Google Scholar 

  32. Kurtzman SH, Russo A, Mitchell JB, DeGraff W, Sindelar WF, Brechbiel MW, et al. 212Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy. J Natl Cancer Inst. 1988;80(6):449–52.

    Article  CAS  Google Scholar 

  33. Kozak RW, Atcher RW, Gansow OA, Friedman AM, Hines JJ, Waldmann TA. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci U S A. 1986;83(2):474–8.

    Article  CAS  Google Scholar 

  34. Carrasquillo JA, Mulshine JL, Bunn PA Jr, Reynolds JC, Foon KA, Schroff RW, et al. Indium-111 T101 monoclonal antibody is superior to iodine-131 T101 in imaging of cutaneous T-cell lymphoma. J Nucl Med. 1987;28(3):281–7.

    PubMed  CAS  Google Scholar 

  35. Carrasquillo JA, Bunn PA Jr, Keenan AM, Reynolds JC, Schroff RW, Foon KA, et al. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody. N Engl J Med. 1986;315(11):673–80.

    Article  CAS  Google Scholar 

  36. Waldmann TA, White JD, Carrasquillo JA, Reynolds JC, Paik CH, Gansow OA, et al. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood. 1995;86(11):4063–75.

    Article  CAS  Google Scholar 

  37. Colcher D, Esteban J, Carrasquillo JA, Sugarbaker P, Reynolds JC, Bryant G, et al. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res. 1987;47(15):4218–24.

    PubMed  CAS  Google Scholar 

  38. Carrasquillo JA, Krohn KA, Beaumier P, McGuffin RW, Brown JP, Hellström KE, et al. Diagnosis of and therapy for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat Rep. 1984;68(1):317–28.

    PubMed  CAS  Google Scholar 

  39. NIH Clinical Center Data Report 2020. https://clinicalcenter.nih.gov/sites/nihinternet/files/internet-files/about/_pdf/2020CCDataReport.pdf. Accessed 16 June 2021.

  40. Brechbiel MW. Targeted α-therapy. Cancer Biother Radiopharm. 2020;35(6):397.

    Article  CAS  Google Scholar 

  41. Milenic DE, Baidoo KE, Kim YS, Barkley R, Brechbiel MW. Targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease: an investigation of the human anti-EGFR monoclonal antibody, panitumumab. Transl Oncol. 2017;10(4):535–45.

    Article  Google Scholar 

  42. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bhadrasain “Vik” Vikram for critical review and comments on the manuscript.

Funding

The authors are federal employees of the NCI (except Martin Brechbiel, who is a former federal employee of the NCI and is retired).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jacek Capala, Michael Espey; data analysis: Julie A. Hong, Christie A. Canaria; drafting, review, and editing: Julie A. Hong, Martin Brechbiel, Jeff Buchsbaum, Christie A. Canaria, Freddy E. Escorcia, Michael Espey, Charles Kunos, Frank Lin, Deepa Narayanan, Jacek Capala.

Corresponding author

Correspondence to Jacek Capala.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Disclaimer

This article represents the opinion of the authors. It does not represent the opinion or policy of the US National Cancer Institute of the National Institutes of Health.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Radiopharmacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J.A., Brechbiel, M., Buchsbaum, J. et al. National Cancer Institute support for targeted alpha-emitter therapy. Eur J Nucl Med Mol Imaging 49, 64–72 (2021). https://doi.org/10.1007/s00259-021-05503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05503-z

Keywords

Navigation