Skip to main content

Novel Radiopharmaceuticals for Therapy

Nuclear Oncology

Abstract

In the era of personalized medicine, “target radionuclide therapy” (TRT) is designed to damage only the cancerous cells while sparing unnecessary damage to the adjacent healthy cells/tissues. Unlike conventional external beam radiation therapy, TRT is intended to cause less or no collateral damage to normal tissues, as it aims at achieving targeted drug delivery either to a clinically diagnosed cancer not amenable to surgery or to metastatic tumor cells and tumor cell clusters, thus providing systemic therapy of cancer. Currently there are hundreds of new pathway-targeted anticancer agents undergoing phase II and phase III clinical trials. TRT is just one type within the domain of “targeted therapies.” In addition to the effective targeted radiopharmaceuticals already well validated for routine clinical use, newer radiolabeled agents are still in the phase of either preclinical or clinical validation.

This chapter describes the main physical and radiochemical characteristics of radionuclides that have potential or have already been employed to label biologically reactive molecules for the development of novel radiopharmaceuticals for therapy. Some of these agents have entered advanced clinical trials in tumor-bearing patients. Results of these clinical trials cover a wide spectrum of potential clinical usefulness.

The chapter is divided into two main parts depending on the type of particle emission (α- or β-associated or not with the emission of either γ- or β+-radiation). Within each domain, there is some exchange of experience and shift of focus in the various phases of development, depending on the modalities of ascertaining efficient tumor targeting according to the principles of theranostics. The example of a novel α-emitting radiopharmaceutical that has most recently achieved approval by regulatory agencies for clinical use (223Ra-dichloride) is presented in detail as the paradigm for an agent that is showing a survival advantage besides the original target of pain palliation from bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[211At]SAPC:

N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate

ALP:

Alkaline phosphatase

BBN:

Bombesin

BsMAb:

Bispecific monoclonal antibody

CAIX:

Carbonic anhydrase isoenzyme 9

ccRCC:

Clear-cell renal carcinoma

CEA:

Carcinoembryonic antigen

CI:

Confidence interval

DOTA:

2-(4-isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

EBRT:

External beam radiation therapy

ECM:

Extracellular matrix

EMEA:

European Medicines Agency

ETDMP:

Ethylenediamine tetra(methylene phosphonic acid)

FDA:

Food and Drug Administration of the United States of America

FN:

Fibronectin

GA:

Arabic glycoprotein

HA:

Hydroxyapatite

HAMA:

Human anti-mouse antibody

HER2:

Human epidermal growth factor receptor 2, also known as receptor tyrosine-protein kinase erbB-2, or HER2/neu

HSG:

Histaminesuccinyl-glutamine hapten

L-19 SIP:

Small immunoreactive protein, (scFv)2, derived from monoclonal antibody L19

L-19:

Monoclonal antibody recognizing the EDB domain of fibronectin

MAA:

Macroaggregated albumin

mAb:

Monoclonal antibody

mCRPC:

Metastatic castrate-resistant prostate cancer

MIBG:

Metaiodobenzyilguanidine

MTA-1:

Metastasis-associated protein encoded by the MTA1 gene

MTC:

Medullary thyroid cancer

MTD:

Maximum tolerated dose

MTRD:

Maximum tolerated radiation dose

MX35:

A monoclonal antibody recognizing the sodium dependent phosphate transport protein 2b

NaPi2b:

Sodium-dependent phosphate transport protein 2b

NCA:

No-carrier-added

NHL:

Non-Hodgkin’s lymphoma

PAI2-uPAR:

Proteases, members of the urokinase-type plasminogen activator family

PCa:

Prostatic carcinoma

PET:

Positron emission tomography

PRRT:

Peptide receptor radionuclide therapy

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RE:

Radioembolization

RIT:

Radioimmunotherapy

SCID:

Severe combined immunodeficiency

SPECT:

Single-photon emission computed tomography

SRE:

Skeletal-related event

TAT:

Targeted alpha therapy

TCMC:

2-(4-isothiocyanatobenzyl-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamonylmetyl)-cyclododecane (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

Theranostic:

An agent with both diagnostic and therapeutic capabilities (e.g., 131I-iodide – in low activity it is a diagnostic agent, in high activity it is a therapeutic agent)

TROP-2:

Cell-surface glycoprotein overexpressed in adenocarcinomas, correlated with tumor aggressiveness

TRT:

Targeted radionuclide therapy

VGEF:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res. 2006;12:6250s–7.

    Article  CAS  PubMed  Google Scholar 

  2. Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, alpha-particle-emitting 223Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62:3120–5.

    CAS  PubMed  Google Scholar 

  3. Henriksen G, Fisher DR, Roeske JC, Bruland OS, Larsen RH. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.

    CAS  PubMed  Google Scholar 

  4. Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11:4451–9.

    Article  CAS  PubMed  Google Scholar 

  5. Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, Humm JL, Rathkopf DE, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:1384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nilsson S, Franzén L, Parker C, Tyrrell C, Blom R, Tennvall J, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8:587–94.

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson S, Franzen L, Parker C, Tyrrell C, Blom R, et al. Two-year survival follow-up of the randomized, double-blind, placebo-controlled phase II study of radium-223 chloride in patients with castration-resistant prostate cancer and bone metastases. Clin Genitourin Cancer. 2013;11:20–6.

    Article  PubMed  Google Scholar 

  8. Nilsson S, Strang P, Aksnes AK, Franzen L, Olivier P, Pecking A, et al. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer. 2012;48:678–86.

    Article  CAS  PubMed  Google Scholar 

  9. Parker CC, Pascoe S, Chodacki A, O’Sullivan JM, Germá JR, O’Brayn-Tear CG, et al. A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol. 2013;63:189–97.

    Article  CAS  PubMed  Google Scholar 

  10. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  11. Parker C, Gillessen S, Heidenreich A, Horwich A, on behalf of the ESMO Guidelines Committee. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v69–77.

    Article  PubMed  Google Scholar 

  12. NCCN, National Comprehensive Cancer Network. https://www.nccn.org/patients/ guidelines/prostate/files/ assets/common/downloads/files/prostate.pdf. Last accessed 18 Jul 2016.

  13. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6:1433–55.

    Article  CAS  PubMed  Google Scholar 

  14. Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.

    CAS  PubMed  Google Scholar 

  15. Zalutsky MR, Garg PK, Friedman HS, Bigner DD. Labeling monoclonal antibodies and F(ab′)2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci U S A. 1989;86:7149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reist CJ, Foulon CF, Alston K, Bigner DD, Zalutsky MR. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate. Nucl Med Biol. 1999;26:405–11.

    Article  CAS  PubMed  Google Scholar 

  17. Orozco JJ, Bäck T, Kenoyer A, Balkin ER, Hamlin DK, Wilbur DS, et al. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–8.

    Article  CAS  PubMed  Google Scholar 

  19. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2 – A phase I study. J Nucl Med. 2009;50:1153–60.

    Article  CAS  PubMed  Google Scholar 

  20. Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot. 2005;62:667–79.

    Article  CAS  PubMed  Google Scholar 

  21. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem. 2005;77:6288–91.

    Article  CAS  PubMed  Google Scholar 

  22. Apostolidis C, Molinet R, McGinley J, Abbas K, Mollenbeck J, Morgenstern A. Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot. 2005;62:383–7.

    Article  CAS  PubMed  Google Scholar 

  23. Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60:1371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63:5084–90.

    CAS  PubMed  Google Scholar 

  25. Song H, Hobbs RF, Vajravelu R, Huso DL, Esaias C, Apostolidis C, et al. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69:8941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, et al. LaPO4 nanoparticles doped with actinium-225 that partially sequesters daughter radionuclides. Bioconjug Chem. 2011;22:766–76.

    Article  CAS  PubMed  Google Scholar 

  27. McLaughlin MF, Robertson D, Pevsner PH, Wall JS, Mirzadeh S, Kennel SJ. LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biother Radiopharm. 2014;29:34–41.

    Article  CAS  PubMed  Google Scholar 

  28. McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40.

    Article  CAS  PubMed  Google Scholar 

  29. Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55:1636–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meredith RF, Torgue J, Azure MT, Shen S, Saddekni S, Banaga E, et al. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother Radiopharm. 2014;29:12–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz J, Jaggi JS, O’Donoghue JA, Ruan S, McDevitt M, Larson SM, et al. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys Med Biol. 2011;56:721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.

    Article  PubMed  CAS  Google Scholar 

  33. Benešová M, Bauder-Wüst U, Schäfer M, et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem. 2016;59:1761–75.

    Article  PubMed  CAS  Google Scholar 

  34. Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with Lu-177 labeled PSMA-617. J Nucl Med. Mar 16, 2016 [Epub ahead of print].

    Google Scholar 

  35. Ahmadzadehfar H, Rahbar K, Kürpig S, et al. Early side effects and first results of radioligand therapy with 177Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res. 2015;5(1):114. doi:10.1186/s13550-015-0114-2. Epub 2015 Jun 20.

    PubMed  Google Scholar 

  36. Ahmadzadehfar H, Eppard E, Kürpig S, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7:12477–88.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kratochwil C, Bruchertseifer F, Giesel FL et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2016 Jul 7. pii: jnumed.116.178673. [Epub ahead of print].

    Google Scholar 

  38. Heyerdahl H, Abbas N, Sponheim K, Mollatt C, Bruland Ø, Dahle J. Targeted alpha therapy with 227Th-trastuzumab of intraperitoneal ovarian cancer in nude mice. Curr Radiopharm. 2013;6:106–16.

    Article  CAS  PubMed  Google Scholar 

  39. O’Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  40. Boudousq V, Bobyk L, Busson M, Garambois V, Jarlier M, Charalambatou P, et al. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS One. 2013;8:e69613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDevitt MR, Sgouros G, Finn RD, Humm JL, Lurcic JC, Larson S, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25:1341–51.

    Article  CAS  PubMed  Google Scholar 

  42. Jurcic JG, Pandit-Taskar N, Divgi CR, et al. Alpha particle immunotherapy for acute myeloid leukemia (AML) with bismuth-213 and actinium-225 [abstract]. Cancer Biother Radiopharm. 2006;21:396.

    Google Scholar 

  43. McLaughlin MF, Woodward J, Boll RA, Wall JS, Rondine AJ, Kennel SJ, et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One. 2013;8:e54531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–9.

    CAS  PubMed  Google Scholar 

  45. Supiot S, Faivre-Chauvet A, Couturier O, Heymann MF, Robillard N, Kraeber-Bodéré F, et al. Comparison of the biologic effects of MA5 and B-B4 monoclonal antibody labeled with iodine-131 and bismuth-213 on multiple myeloma. Cancer. 2002;94:1202–9.

    Article  CAS  PubMed  Google Scholar 

  46. Chérel M, Gouard S, Gaschet J, Saï-Maurel C, Bruchertseifer F, Morgenstern A, et al. 213Bi Radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J Nucl Med. 2013;54:1597–04.

    Article  PubMed  CAS  Google Scholar 

  47. http://www.arevamed.areva.com/EN/home-134/nuclear-medicine.html#tab=tab3

  48. Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. 212Pb-radioimmunotherapy induces G2 cell-cycle arrest and delays DNA damage repair in tumor xenografts in a model for disseminated intraperitoneal disease. Mol Cancer Ther. 2012;11:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yong KJ, Milenic DE, Baidoo KE, Kim YS, Brechbiel MW, et al. Gene expression profiling upon 212Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med. 2013;2:646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruegg CL, Anderson-Berg ET, Brechbiel MW, Mirzadeh S, Gansow OA, Strand M, et al. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res. 1990;50:4221–6.

    CAS  PubMed  Google Scholar 

  51. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotope 203Pb and 212Pb. Nucl Med Biol. 2000;27:93–100.

    Article  CAS  PubMed  Google Scholar 

  52. Ruble G, Wu C, Squire RA, Ganswo OA, Strand M. The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. Int J Radiat Oncol Biol Phys. 1996;34:609–16.

    Article  CAS  PubMed  Google Scholar 

  53. McMurry TJ, Brechbiel MW, Kumar K, Gansow OA. Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjugate Chem. 1992;3:108–17.

    Article  CAS  Google Scholar 

  54. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Alpha-particle radioimmunotherapy of disseminated peritoneal diseases using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm. 2005;20:557–66.

    Article  CAS  PubMed  Google Scholar 

  55. Andersson H, Elgqvist J, Horvath G, Hultborn R, Jacobsson L, Jensen H, et al. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: an overview of results in an ovarian tumor model. Clin Cancer Res. 2003;9:S3914–21.

    Google Scholar 

  56. Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Evaluation of cetuximab as a candidate for targeted α-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs. 2015;7:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta. 1840;2014:2403–13.

    Google Scholar 

  58. Rosario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

    Article  CAS  Google Scholar 

  59. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  60. Nicolò G, Salvi S, Oliveri G, Borsi L, Castellani P, Zardi L. Expression of tenascin and of the ED-B containing oncofetal fibronectin isoform in human cancer. Cell Differ Dev. 1990;32:401–8.

    Article  PubMed  Google Scholar 

  61. Halin C, Zardi L, Neri D. Antibody-based targeting of angiogenesis. News Physiol Sci. 2001;16:191–4.

    CAS  PubMed  Google Scholar 

  62. Castellani P, Viale G, Dorcaratto A, Nicolò G, Kaczmarek J, Querzeé G, Zardi L. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer. 1994;59:612–8.

    Article  CAS  PubMed  Google Scholar 

  63. Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol. 1989;108:1139–48.

    Article  CAS  PubMed  Google Scholar 

  64. Kaczmarek J, Castellani P, Nicolò G, Spina B, Allemanni G, Zardi L. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer. 1994;59:11–6.

    Article  CAS  PubMed  Google Scholar 

  65. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood. 2009;113:2265–74.

    Article  CAS  PubMed  Google Scholar 

  66. Locher R, Erba PA, Hirsch B, Bombardieri E, Giovannoni L, Neri D, et al. Abundant in vitro expression of the oncofetal ED-B-containing fibronectin translates into selective pharmacodelivery of 131I-L19SIP in a prostate cancer patient. J Cancer Res Clin Oncol. 2014;140:35–43.

    Article  CAS  PubMed  Google Scholar 

  67. Pujuguet P, Hammann A, Moutet M, Samuel JL, Martin F, Martin M. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor- associated myofibroblasts. Am J Pathol. 1996;148:579–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. D’Ovidio MC, Mastracchio A, Marzullo A, Ciabatta M, Pini B, Uccini S, et al. Intratumoral microvessel density and expression of ED- A/ED-B sequences of fibronectin in breast carcinoma. Eur J Cancer. 1998;34:1081–5.

    Article  PubMed  Google Scholar 

  69. Karelina TV, Eisen AZ. Interstitial collagenase and the ED-B oncofetal domain of fibronectin are markers of angiogenesis in human skin tumors. Cancer Detect Prev. 1998;22:438–44.

    Article  CAS  PubMed  Google Scholar 

  70. Castellani P, Borsi L, Carnemolla B, Biro A, Dorcaratto A, Viale GL, et al. Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol. 2002;161:1695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998;273:21769–76.

    Article  CAS  PubMed  Google Scholar 

  72. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 1999;59:347–52.

    CAS  PubMed  Google Scholar 

  73. Demartis S, Tarli L, Borsi L, Zardi L, Neri D. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med. 2001;28:534–9.

    Article  CAS  PubMed  Google Scholar 

  74. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer. 2002;102:75–85.

    Article  CAS  PubMed  Google Scholar 

  75. Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F, et al. Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res. 2005;11:7053s–63.

    Article  CAS  PubMed  Google Scholar 

  76. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, et al. Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med. 2006;47:1127–35.

    CAS  PubMed  Google Scholar 

  77. Rybak JN, Trachsel E, Scheuermann J, Neri D. Ligand-based vascular targeting of disease. Chem Med Chem. 2007;2:22–40.

    Article  CAS  PubMed  Google Scholar 

  78. Santimaria M, Moscatelli G, Giovannoni L, Leprini A, Neri G, Neri D, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res. 2003;9:571–9.

    CAS  PubMed  Google Scholar 

  79. Erba PA, Sollini M, Orciuolo E, Traino C, Petrini M, Paganelli G, et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J Nucl Med. 2012;53:922–7.

    Article  CAS  PubMed  Google Scholar 

  80. Poli G, Bianchi C, Virotta G, Bettini A, Moretti R, Trachsel E, et al. Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunol Res. 2013;1:134–43.

    Article  CAS  PubMed  Google Scholar 

  81. Qaim SM. Therapeutic radionuclides and nuclear data. Radiochim Acta. 2001;89:297–302.

    CAS  Google Scholar 

  82. Kondev FG. Nuclear data sheets for A ¼ 177. Nucl Data Sheets. 2003;98:801–1095.

    Article  CAS  Google Scholar 

  83. Tagawa ST, Beltran H, Vallabhajosula S, Goldsmith SJ, Osborne J, Matulich D, et al. Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer. 2010;116:1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Donnell RT, DeNardo SJ, Miers LA, Lamborn KR, Kukis DL, DeNardo GL, et al. Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate. 2002;50:27–37.

    Article  PubMed  Google Scholar 

  85. Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate. 2000;43:150–7.

    Article  CAS  PubMed  Google Scholar 

  86. Bostwick DG, Pacellim A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82:2256–61.

    Article  CAS  PubMed  Google Scholar 

  87. Liu H, Rajasekaran AK, Moy P, Xia Y, Kim S, Navarro V, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58:4055–60.

    CAS  PubMed  Google Scholar 

  88. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–01.

    Article  CAS  PubMed  Google Scholar 

  89. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177 labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barbet J, Peltier P, Bardet S, Vuillez JP, Bachelot I, Denet S, et al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA X anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39:1172–8.

    CAS  PubMed  Google Scholar 

  91. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal J-F. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 2006;24:823–34.

    Article  CAS  PubMed  Google Scholar 

  92. Chatal J-F, Campion L, Kraeber-Bodéré F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.

    Article  CAS  PubMed  Google Scholar 

  93. Schoffelen R, Boerman OC, Goldenberg DM, Sharkey RM, van Herpen CML, Franssen GM, et al. Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer. 2013;109:934–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schoffelen R, van der Weg W, Visser EP, Goldenberg DM, Sharkey RM, McBride WJ, et al. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2014;41:1593–02.

    CAS  PubMed  Google Scholar 

  95. Schoffelen R, van der Graaf WTA, Franssen G, Sharkey RM, Goldenberg DM, McBride WJ, et al. Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. J Nucl Med. 2010;51:1780–7.

    Article  PubMed  Google Scholar 

  96. Liu C, Brasic JR, Liu X, Li H, Xiang X, Luo Z, et al. Timing and optimized acquisition parameters for the whole-body imaging of 177Lu-EDTMP toward performing bone palliation treatment. Nucl Med Commun. 2012;33:90–6.

    Article  CAS  PubMed  Google Scholar 

  97. Karagiannis TC. Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med. 2007;10:82–8.

    PubMed  Google Scholar 

  98. Unni PR, Solov SV, Chakraborty S, Chaudhary PR, Venkatesh M, Ramamoorthy N, et al. 166Ho-HA: a new radiopharmaceutical for treatment of arthritis. BARC Newsletter. 2006;208:1–8.

    Google Scholar 

  99. Unni PR, Chaudhury PR, Venkatesh M, Ramamoorthy N, Pillai MRA. Preparation and evaluation of 166Ho labeled hydroxyapatite (HA) particles for radiosynovectomy. Nucl Med Biol. 2002;29:199–209.

    Article  CAS  PubMed  Google Scholar 

  100. Mumper RJ, Ryo UY, Jay M. Neutron-activated holmium-166-poly(L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med. 1991;32:2139–43.

    CAS  PubMed  Google Scholar 

  101. Mumper J, Mills BJ, Ryo UY, Jay M. Polymeric microspheres for radionuclide synovectomy containing neutron-activated holmium-166. J Nucl Med. 1992;33:398–402.

    CAS  PubMed  Google Scholar 

  102. Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Mali WP, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol. 2012;13:1025–34.

    Article  CAS  PubMed  Google Scholar 

  103. Mathew B, Chakraborty S, Das T, Sarma HD, Banerjee S, Samuel G, Venkatesh M, Pillai MRA. 175Yb labeled polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot. 2004;60:635–42.

    Article  CAS  PubMed  Google Scholar 

  104. Das T, Chakraborty S, Sarma HD, Tandon P, Banerjee S, Venkatesh M, et al. 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol. 2009;36:561–8.

    Article  CAS  PubMed  Google Scholar 

  105. DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med. 1999;40:302–10.

    CAS  PubMed  Google Scholar 

  106. DeNardo GL, DeNardo SJ, O’Donnell RT, Kroger LA, Kukis DL, Meares CF, et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin’s lymphoma. Clin Lymphoma. 2000;1:118–26.

    Article  CAS  PubMed  Google Scholar 

  107. Delaloye AB, Delaloye B, Buchegger F, Vogel CA, Gillet M, Mach JP, et al. Comparison of copper-67- and iodine-125-labeled anti-CEA monoclonal antibody biodistribution in patients with colorectal tumors. J Nucl Med. 1997;38:847–53.

    CAS  PubMed  Google Scholar 

  108. Chu SYF, Ekstrom LP, Firestone B. Table of Isotopes decay data. The Lund/LBNL Nuclear Data Search. February 1999. Last accessed 19 Jul 2016.

    Google Scholar 

  109. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–03.

    Article  CAS  PubMed  Google Scholar 

  110. Dancey JE, Shepherd FA, Paul K, et al. Treatment of non resectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41:1673–81.

    CAS  PubMed  Google Scholar 

  111. Kossert K, Schrader H. Activity standardization by liquid scintillation counting and half-life measurements of 90Y. Appl Radiat Isot. 2004;60:741–9.

    Article  CAS  PubMed  Google Scholar 

  112. Kyle V, Hazleman BL, Wraight PE. Yttrium-90 therapy and 99mTc Pertechnetate knee uptake measurements in the management of rheumatoid arthritis. Ann Rheum Dis. 1983;42:132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith T, Crawley JCW, Shawe DJ, Gumpel JM. SPECT using Bremsstrahlung to quantify 90Y uptake in Baker’s cysts: its application in radiation synovectomy of the knee. Eur J Nucl Med. 1988;14:498–503.

    Article  CAS  PubMed  Google Scholar 

  114. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997;24:792–5.

    CAS  PubMed  Google Scholar 

  115. De Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32:133–40.

    Article  PubMed  Google Scholar 

  116. Knox SJ, Goris ML, Trisler K, Negrin, Davis T, Liles TM, et al. Yttrium-90-labeled anti CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res. 1996;2:457–70.

    CAS  PubMed  Google Scholar 

  117. Leichner PK, Akabani G, Colcher D, Harisson KA, Eckblade M, Baranowska-Kortylewicz J, et al. Patient-specific dosimetry of indium-111- and yttrium-90-labeled monoclonal antibody CC49. J Nucl Med. 1997;38:512–6.

    CAS  PubMed  Google Scholar 

  118. Grady ED. Internal radiation therapy of hepatic cancer. Dis Colon Rectum. 1979;22:371–5.

    Article  CAS  PubMed  Google Scholar 

  119. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.

    CAS  PubMed  Google Scholar 

  120. Lau WY, Leung WT, Ho S, Leung NW, Chan M, Lin J, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer. 1994;70:994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT – part 1: diagnostic reporting. JNMMI Res. 2013;3:56. doi:10.1186/2191-219X-3-56.

    Article  CAS  Google Scholar 

  122. Hnatowich DJ, Virzi F, Doherty PW. DTPA-coupled antibodies labeled with Yttrium-90. J Nucl Med. 1985;26:503–9.

    CAS  PubMed  Google Scholar 

  123. Wright CL, Werner JD, Tran JM, Gates VL, Rikabi AA, Shah MH, et al. Radiation pneumonitis following yttrium-90 radioembolization: case report and literature review. J Vasc Interv Radiol. 2012;23:669–74.

    Article  PubMed  Google Scholar 

  124. Collins J, Salem R. Hepatic radioembolization complicated by gastrointestinal ulceration. Semin Interv Radiol. 2011;28:240–5.

    Article  Google Scholar 

  125. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.

    Article  PubMed  Google Scholar 

  126. Lhommel R, van Elmbt L, Goffette P, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.

    Article  PubMed  Google Scholar 

  127. Knight PJ, Dombos JF, Rosen D, Lin JJ, Farha GJ. The use of interstitial radiation therapy in the treatment of persistent, localized, and unresectable cancer in children. Cancer. 1986;57:951–4.

    Article  CAS  PubMed  Google Scholar 

  128. Rich TA. Radiation therapy for pancreatic cancer: eleven year experience at the JCRT. Int J Radiat Oncol Biol Phys. 1985;11:759–63.

    Article  CAS  PubMed  Google Scholar 

  129. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gommersall L, Shergill IS, Ahmed HU, Arya M, Grange P, Gill IS. Nanotechnology in the management of prostate cancer. Br J Urol Int. 2008;102:1493–5.

    Article  Google Scholar 

  131. Shulga OV, Zhou D, Demchenko AV, Stine KJ. Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform. Analyst. 2008;133:319–22.

    Article  CAS  PubMed  Google Scholar 

  132. Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32:1119–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.

    Article  CAS  PubMed  Google Scholar 

  134. Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn. 2006;6:307–18.

    Article  CAS  PubMed  Google Scholar 

  135. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  CAS  PubMed  Google Scholar 

  136. Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem. 2006;384:620–30.

    Article  CAS  PubMed  Google Scholar 

  137. Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007;96:1315–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5:1909–17.

    Article  CAS  PubMed  Google Scholar 

  139. Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7:833–7.

    Article  CAS  PubMed  Google Scholar 

  140. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  CAS  PubMed  Google Scholar 

  141. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11:3530–4.

    Article  CAS  PubMed  Google Scholar 

  142. Chanda N, Kan P, Watkinson LD, et al. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine. 2010;6:201–9.

    Article  CAS  PubMed  Google Scholar 

  143. Hu F, Cutler CS, Hoffman T, Sieckman G, Volkert WA, Jurisson SS. Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-betaAla-BBN(7-14)NH2. Nucl Med Biol. 2002;29:423–30.

    Article  CAS  PubMed  Google Scholar 

  144. Grazman B, Troutner DE. 105Rh as a potential radiotherapeutic agent. Appl Radiat Isot. 1988;39:257–60.

    Article  CAS  Google Scholar 

  145. Goswami N, Higginbotham C, Volkert W, Alberto R, Nef W, Jurisson S. Rhodium-105 tetrathioether complexes: radiochemistry and initial biological evaluation. Nucl Med Biol. 1999;26:951–7.

    Article  CAS  PubMed  Google Scholar 

  146. Ando A, Ando I, Tonami N, Kinuya S, Okamoto N, Sugimoto M, et al. Production of 105Rh–EDTMP and its bone accumulation. Appl Radiat Isot. 2000;52:211–5.

    Article  CAS  PubMed  Google Scholar 

  147. Pietrelli L, Mausner LF, Kolsky KL. Separation of carrier-free Sc-47 from titanium targets. J Radioanal Nucl Chem. 1992;157:335–45.

    Article  CAS  Google Scholar 

  148. Müller C, Bunka M, Reber J, Fischer C, Zhernosekov K, Türler A, Schibli R. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β-emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J Nucl Med. 2013;54:2168–74.

    Article  PubMed  CAS  Google Scholar 

  149. Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, et al. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.

    Article  PubMed  CAS  Google Scholar 

  150. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelník V, Opavský R, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–88.

    CAS  PubMed  Google Scholar 

  151. Opavsky R, Pastorekova S, Zelnik V, Gibadulinová A, Stanbridge EJ, Závada J, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996;33:480–7.

    Article  CAS  PubMed  Google Scholar 

  152. Grabmaier K, Vissers JL, De Weijert MC, Oosterwijk-Wakka JC, Van Bokhoven A, Brakenhoff RH, et al. Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer. 2000;85:865–70.

    Article  CAS  PubMed  Google Scholar 

  153. Uemura H, Nakagawa Y, Yoshida K, Saga S, Yoshikawa K, Hirao Y, et al. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer. 1999;81:741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Divgi CR, Bander NH, Scott AM, O’Donoghue JA, Sgouros G, Welt S, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res. 1998;4:2729–39.

    CAS  PubMed  Google Scholar 

  155. Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, et al. Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer. 1986;38:489–94.

    Article  CAS  PubMed  Google Scholar 

  156. Pastorekova S, Parkkila S, Parkkila AK, Opavský R, Zelník V, Saarnio J, et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112:398–408.

    Article  CAS  PubMed  Google Scholar 

  157. Steffens MG, Boerman OC, de Mulder PH, Oyen WJ, Buijs WC, Witjes JA, et al. Phase I radioimmunotherapy of metastatic renal cell carcinoma with 131I-labeled chimeric monoclonal antibody G250. Clin Cancer Res. 1999;5(10 Suppl):3268s–74.

    CAS  PubMed  Google Scholar 

  158. Divgi CR, O’Donoghue JA, Welt S, O’Neel J, Finn R, Motzer RJ, et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J Nucl Med. 2004;45:1412–21.

    CAS  PubMed  Google Scholar 

  159. Brouwers AH, Mulders PF, de Mulder PH, van den Broek WJ, Buijs WC, Mala C, et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J Clin Oncol. 2005;23:6540–8.

    Article  CAS  PubMed  Google Scholar 

  160. Brouwers AH, Buijs WC, Mulders PF, de Mulder PH, van den Broek WJ, Mala C, et al. Radioimmunotherapy with [131I]cG250 in patients with metastasized renal cell cancer: dosimetric analysis and immunologic response. Clin Cancer Res. 2005;11(19 Pt 2):7178s–86.

    Article  CAS  PubMed  Google Scholar 

  161. Stillebroer AB, Boerman OC, Desar IM, Boers-Sonderen MJ, van Herpen CM, Langenhuijsen JF, et al. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol. 2013;64:478–85.

    Article  CAS  PubMed  Google Scholar 

  162. Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O’Donoghue JA, et al. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. J Nucl Med. 2012;53:82–9.

    Article  CAS  PubMed  Google Scholar 

  163. Divgi CR, Uzzo RG, Gatsonis C, Bartz R, Treutner S, Yu JQ, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federica Guidoccio , Sara Mazzarri , Federica Orsini , Paola A. Erba or Giuliano Mariani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Guidoccio, F., Mazzarri, S., Orsini, F., Erba, P.A., Mariani, G. (2016). Novel Radiopharmaceuticals for Therapy. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Novel Radiopharmaceuticals for Therapy
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_36-2

  2. Original

    Novel Radiopharmaceuticals for Therapy
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_36-1