Skip to main content

Advertisement

Log in

In vivo imaging of cell proliferation in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET) with 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) provides a noninvasive assessment of tumour proliferation in vivo and could be a valuable imaging modality for assessing malignancy in meningiomas. We investigated a range of static and dynamic [18F]FLT metrics by correlating the findings with cellular biomarkers of proliferation and angiogenesis.

Methods

Seventeen prospectively recruited adult patients with intracranial meningiomas underwent a 60-min dynamic [18F]FLT PET following surgery. Maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to healthy brain tissue and blood radioactivity obtained from 40 to 60 min summed dynamic images (PET40–60) and ~ 60-min blood samples were calculated. Kinetic modelling using a two-tissue reversible compartmental model with a fractioned blood volume (VB) was performed to determine the total distribution volume (VT). Expressions of proliferation and angiogenesis with key parameters including Ki-67 index, phosphohistone-H3 (phh3), MKI67, thymidine kinase 1 (TK1), proliferating cell nuclear antigen (PCNA), Kirsten RAt Sarcoma viral oncogene homolog (KRAS), TIMP metallopeptidase inhibitor 3 (TIMP3), and vascular endothelial growth factor A (VEGFA) were determined by immunohistochemistry and/or quantitative polymerase chain reaction.

Results

Immunohistochemistry revealed 13 World Health Organization (WHO) grade I and four WHO grade II meningiomas. SUVmax and SUVmean normalized to blood radioactivity from PET40–60 and blood sampling, and VT were able to significantly differentiate between WHO grades with the best results for maximum and mean tumour-to-whole-blood ratios (sensitivity 100%, specificity 94–95%, accuracy 99%; P = 0.003). Static [18F]FLT metrics were significantly correlated with proliferative biomarkers, especially Ki-67 index, phh3, and TK1, while no correlations were found with VEGFA or VB. Using Ki-67 index with a threshold > 4%, the majority of [18F]FLT metrics showed a high ability to identify aggressive meningiomas with SUVmean demonstrating the best performance (sensitivity 80%, specificity 81%, accuracy 80%; P = 0.024).

Conclusion

[18F]FLT PET could be a useful imaging modality for assessing cellular proliferation in meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

CI:

Confidence interval

CT:

Computed tomography

CT :

Cycle threshold

EANO:

European Association of Neuro-Oncology

EGFR:

Epidermal growth factor receptor

[18F]FDG:

2-[18F]fluoro-2-deoxy-D-glucose

[18F]FET:

O-(2-[18F]fluoroethyl)-L-tyrosine

[18F]FLT:

3′-deoxy-3′-[18F]fluorothymidine

IDIF:

Image-derived input function

GOI:

Genes of interest

IQR:

Interquartile range

KRAS:

Kirsten RAt Sarcoma viral oncogene homologue

[11C]MET:

[Methyl-11C]-L-methionine

MGAT5:

N-Acetylglucosaminyltransferase V

MMP2/9:

Matrix metallopeptidases 2 and 9

MRI:

Magnetic resonance imaging

PCNA:

Proliferating cell nuclear antigen

PET:

Positron emission tomography

PF:

Parent fraction

phh3:

Phosphohistone-H3

qPCR:

Quantitative polymerase chain reaction

ROC:

Receiver operating characteristic

ROI:

Region of interest

SSTR2:

Somatostatin receptor subtype 2

SUV:

Standardized uptake value

TAC:

Time-activity curve

TBR:

Tumour-to-blood ratio

TGR:

Tumour-to-grey ratio

TIMP3/4:

TIMP metallopeptidase inhibitors 3 and 4

TK1:

Thymidine kinase 1

TPFR:

Tumour-to-parent fraction ratio

TPR:

Tumour-to-plasma ratio

TWBR:

Tumour-to-whole-blood ratio

TWR:

Tumour-to-white matter ratio

V B :

Blood volume fraction

VEGFA:

Vascular endothelial growth factor A

VOI:

Volume of interest

WHO:

World Health Organization

References

  1. Backer-Grøndahl T, Moen BH, Torp SH. The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol. 2012;5:231–42.

    PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  3. Pearson BE, Markert JM, Fisher WS, et al. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus. 2008;24:E3.

    Article  PubMed  Google Scholar 

  4. Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–91.

    Article  PubMed  Google Scholar 

  5. Rogers L, Zhang P, Vogelbaum MA, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 059. J Neurosurg. 2018;129:35–47.

    Article  PubMed  Google Scholar 

  6. Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.

    Article  CAS  PubMed  Google Scholar 

  7. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    CAS  PubMed  Google Scholar 

  8. Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32:257–63.

    Article  CAS  PubMed  Google Scholar 

  9. Wagner M, Seitz U, Buck A, et al. 3′-[F-18]fluoro-3′-deoxythymidine ([F-18]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res. 2008;63:2681–7.

    Google Scholar 

  10. Wang H, Zhang J, Tian J, et al. Using dual-tracer PET to predict the biologic behavior of human colorectal cancer. J Nucl Med. 2009;50:1857–64.

    Article  CAS  PubMed  Google Scholar 

  11. Brockenbrough JS, Souquet T, Morihara JK, et al. Tumor 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J Nucl Med. 2011;52:1181–8.

    Article  PubMed  Google Scholar 

  12. McKinley ET, Ayers GD, Smith A, et al. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One. 2013;8:e58938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang CC, Yan Z, Li W, et al. [18F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res. 2003;63:2681–7.

    Google Scholar 

  14. Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med. 2005;46:1948–58.

    CAS  PubMed  Google Scholar 

  15. Muzi M, Spence AM, O’Sullivan F, et al. Kinetic analysis of 3′-deoxy-3’-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47:1612–21.

    CAS  PubMed  Google Scholar 

  16. Schiepers C, Chen W, Dahlbom M, et al. (18)F-fluorothymidine kinetics of malignant brain tumors. Eur J Nucl Med Mol Imaging. 2007;34:1003–11.

    Article  CAS  PubMed  Google Scholar 

  17. Blocher A, Kuntzsch M, Wei R, Machulla HJ. Synthesis and labeling of 5-O-(4,4-dimethoxytrityl)-2,3′-anhydrothymidine for [18F]FLT preparation. J Radioanal Nucl Chem. 2002;251:55–8.

    Article  CAS  Google Scholar 

  18. Shields AF, Briston DA, Chandupatla S, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging. 2005;32:1269–75.

    Article  CAS  PubMed  Google Scholar 

  19. Ladefoged CN, Andersen FL, Kjær A, et al. RESOLUTE PET/MRI attenuation correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci. 2017;11:453.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khalighi MM, Deller TW, Fan AP, et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. 2018;38:126–35.

    Article  CAS  PubMed  Google Scholar 

  21. Domingues P, González-Tablas M, Otero Á, et al. Genetic/molecular alterations of meningiomas and the signalling pathways targeted. Oncotarget. 2015;6:10671–88.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gupta S, Linda W, Dunn IF. Medical management of meningioma in the era of precision medicine. Neurosurg Focus. 2018;44:E3.

    Article  PubMed  Google Scholar 

  23. Carstens C, Messe E, Zang KD, Blin N. Human KRAS oncogene expression in meningioma. Cancer Lett. 1988;43:37–41.

    Article  CAS  PubMed  Google Scholar 

  24. Barski D, Wolter M, Reifenberger G, Riemenschneider MJ. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12. 3 and malignancy in meningiomas. Brain Pathol. 2010;20:623–31.

    Article  CAS  PubMed  Google Scholar 

  25. Nagae M, Kizuka Y, Mihara E, et al. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun. 2018;9:3380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Okada M, Miyake K, Matsumoto Y, et al. Matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions correlate with the recurrence of intracranial meningiomas. J Neuro-Oncol. 2004;66:29–37.

    Article  Google Scholar 

  27. Okuducu AF, Zils U, Michaelis SA, et al. Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer. 2006;107:1365–72.

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto Y, Ono Y, Aga F, et al. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53:1911–5.

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  30. Galldiks N, Lohmann P, Albert NL, et al. Current status of PET imaging in neuro-oncology. Neuro-Oncology. 2019. https://doi.org/10.1093/noajnl/vdz010.

  31. Nowosielski M, Difranco MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One. 2014;9:e95830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tripathi M, Sharma R, D’Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.

    Article  PubMed  Google Scholar 

  33. Shinomiya A, Kawai N, Okada M, et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging. 2013;40:175–85.

    Article  CAS  PubMed  Google Scholar 

  34. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.

    Article  CAS  PubMed  Google Scholar 

  35. Nikaki A, Prassopoulos V, Efthimiadou R, et al. FLT PET/CT in a case of demyelinating disease. Clin Nucl Med. 2016;41:e342–5.

    Article  PubMed  Google Scholar 

  36. Holter JL, Thorp K, Smith ML, et al. [18F]Fluorothymidine PET imaging in the diagnosis of leptomeningeal involvement with diffuse large B-cell lymphoma. Cancer Imaging. 2011;11:140–3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anton-Rodriguez JM, Lewis D, Djoukhadar I, et al. [18F]flurothymidine and [18F]flurodeoxyglucose PET imaging demonstrates uptake and differentiates growth in neurofibromatosis 2 related vestibular schwannoma. Otol Neurootol. 2019;40:826–35.

    Article  Google Scholar 

  38. Huang RY, Bi WL, Weller M, et al. Proposed response assessment and endpoints for meningioma clinical trials: report from the response assessment in neuro-oncology working group. Neuro-Oncol. 2019;21:26–36.

    Article  PubMed  Google Scholar 

  39. Nguyen NC, Yee MK, Tuchayi AM, et al. Targeted therapy and immunotherapy response assessment with F-18-Flourothymidine positron-emission-tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol. 2018;8:18.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee JW, Kang KW, Park SH, et al. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1574–82.

    Article  PubMed  Google Scholar 

  41. Mitamura K, Yamamoto Y, Norikane T, et al. Correlation of 18F-FDG and 11C-methionine uptake in PET/CT with Ki-67 immunohistochemistry in newly diagnosed intracranial meningiomas. Ann Nucl Med. 2018;32:627–33.

    Article  CAS  PubMed  Google Scholar 

  42. Arita H, Kinoshita M, Okita Y, et al. Clinical characteristics of meningiomas assessed by 11C-methionine and 18F-fluorodeoxyglucose positron-emission tomography. J Neuro-Oncol. 2012;107:379–86.

    Article  Google Scholar 

  43. Ogawa T, Inugami A, Hatazawa J, et al. Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol. 1996;17:345–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cornelius JF, Stoffels G, Filß C, et al. Uptake and tracer kinetics of O-(2-(18)F-fluoroethyl)-L-tyrosine in meningiomas: preliminary results. Eur J Nucl Med Mol Imaging. 2015;42:459–67.

    Article  CAS  PubMed  Google Scholar 

  45. Muzi M, Mankoff DA, Grierson JR, et al. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46:371–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technical staff Nadia Azizi, Marianne Federspiel, Jakup Martin Poulsen, and Karin Stahr and chemists at Clinic of Clinical Physiology, Nuclear Medicine & PET, for help with PET scanning and patient care. The authors would also like to thank the nuclear medicine specialist, Oriol Puig, for helping with kinetic modelling images for the study. Finally, a special thanks to the statistician, Lasse Anderberg, for helping with ROC analyses.

Funding

The work was supported by a grant from the Danish Cancer Society (R146-A9508–16-S2). The Siemens mMR hybrid PET/MR system at Copenhagen University Hospital Rigshospitalet was donated by the John and Birthe Meyer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Asma Bashir, Ian Law, Morten Ziebell, and Kåre Fugleholm conceived the study design. Asma Bashir was responsible for patient recruitment. Asma Bashir and Ian Law contributed to the acquisition, analysis, and interpretation of the PET/MRI data. Asma Bashir, Mark B. Vestergaard, and Lisbeth Marner conducted full kinetic modelling using an image-derived input function. Tina Binderup performed quantitative polymerase chain reaction. Helle Broholm performed the neuropathological examination. Asma Bashir conducted the statistical analysis with the guidance from senior statisticians, Thomas Sheike (Professor) and Lasse Anderberg (MSc). Asma Bashir drafted the first and subsequent manuscripts. Asma Bashir, Mark B. Vestergaard, Helle Broholm, Tina Binderup, Lisbeth Marner, Morten Ziebell, Kåre Fugleholm, Andreas Kjær, and Ian Law contributed to the data interpretation, the increase in the intellectual content, and approved the final version.

Corresponding author

Correspondence to Asma Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Scientific Health Ethics Committee of the Capital region, Copenhagen, Denmark (reference number: H-15006091) and was based on the Declaration of Helsinki II (2013) and the principles of “good clinical practices”.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology—Brain.

Electronic supplementary material

ESM 1

(DOC 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, A., Binderup, T., Vestergaard, M.B. et al. In vivo imaging of cell proliferation in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI. Eur J Nucl Med Mol Imaging 47, 1496–1509 (2020). https://doi.org/10.1007/s00259-020-04704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04704-2

Keywords

Navigation