Skip to main content

Advertisement

Log in

Quantitative imaging biomarkers in nuclear medicine: from SUV to image mining studies. Highlights from annals of nuclear medicine 2018

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objective

Quantification in medical imaging is one of the main goals in research and clinical practice since it allows immediate understanding, objective communication, and comparison. Our aim was to summarize relevant investigations on quantification in nuclear medicine studies published in the volume 32 of Annals of Nuclear Medicine.

Methods

In this article, we summarized the data of 14 selected papers from international research groups that were published between January and December 2018. This is a descriptive review with an inherently subjective selection of articles.

Results

We discussed the role of parameters ranging from standardized uptake value to ratios, to flow within a region of interest, to volumetric parameters and to texture indices in different clinical scenarios in oncology, cardiology, and neurology.

Conclusions

In all the medical disciplines in which nuclear medicine examinations play a role, quantification is essential both in research and in clinical practice. Standardization and high-quality protocols are crucial for the success and reliability of imaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farolfi A, Ghedini P, Fanti S. Highlights from 2017: impactful topics published in the annals of nuclear medicine. Eur J Nucl Med Mol Imaging. 2019;46:217–23.

    PubMed  Google Scholar 

  2. Jadvar H. Highlights of articles published in annals of nuclear medicine 2016. Eur J Nucl Med Mol Imaging. 2017;44:1928–33.

    PubMed  PubMed Central  Google Scholar 

  3. Inubushi M, Tatsumi M, Yamamoto Y, Kato K, Tsujikawa T, Nishii R. European research trends in nuclear medicine. Ann Nucl Med. 2018;32:579–82.

    PubMed  PubMed Central  Google Scholar 

  4. Inubushi M, Kaneta T, Ishimori T, Imabayashi E, Okizaki A, Oku N. Topics of nuclear medicine research in Europe. Ann Nucl Med. 2017;31:571–4.

    PubMed  PubMed Central  Google Scholar 

  5. Shryock RH. The history of quantification in medical science. Isis. The University of Chicago Press. The History of Science Society. 1961;52:215–37.

    Google Scholar 

  6. Weisz G. Body counts: medical quantification in historical and sociological perspective. In: Weisz G, Jorland G, Opinel A, editors. Body Counts Med Quantif Hist Sociol Perspect Hist Sociol sur la Quantif médicale. Montreal, Kingston, London, Ithaca: McGill-Queen’s University Press; 2005. p. 377–93.

    Google Scholar 

  7. Biomarkers [Internet]. Available from: https://www.ncbi.nlm.nih.gov/mesh/68015415. Accessed 26 Aug 2019.

  8. Aronson JK, Ferner RE. Biomarkers – a general review. Curr Protoc Pharmacol. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017;9.23.1–9.23.17.

  9. Sheikh A. Evolution of quantification in clinical nuclear medicine: a brief overview of salient uses and upcoming trends. J Nucl Med Radiat Ther. 2018;09:375.

    Google Scholar 

  10. Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7:358.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abdel Gawad H, Khalil MM, W. Shafaa M, Al Ramlawy S. Development of anatomically and lesion contrast-guided partial volume correction: new 3D formalisms and validation in phantom and clinical studies. Ann Nucl Med. 2019;33:481–94.

    PubMed  Google Scholar 

  12. Ringheim A, Campos Neto G de C, Martins KM, Vitor T, da Cunha ML, Baroni RH. Reproducibility of standardized uptake values of same-day randomized 68Ga-PSMA-11 PET/CT and PET/MR scans in recurrent prostate cancer patients. Ann Nucl Med. 2018;32:523–31.

    CAS  PubMed  Google Scholar 

  13. Annunziata S, Cuccaro A, Tisi MC, Hohaus S, Rufini V. FDG-PET/CT at the end of immuno-chemotherapy in follicular lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET). Ann Nucl Med. 2018;32:372–7.

    CAS  PubMed  Google Scholar 

  14. Albano D, Bertoli M, Battistotti M, Rodella C, Statuto M, Giubbini R, et al. Prognostic role of pretreatment 18F-FDG PET/CT in primary brain lymphoma. Ann Nucl Med. 2018;32:532–41.

    CAS  PubMed  Google Scholar 

  15. Anwar H, Vogl TJ, Abougabal MA, Grünwald F, Kleine P, Elrefaie S, et al. The value of different 18 F-FDG PET/CT baseline parameters in risk stratification of stage I surgical NSCLC patients. Ann Nucl Med. 2018;32:687–94.

    PubMed  Google Scholar 

  16. Beshr R, Isohashi K, Watabe T, Naka S, Horitsugi G, Romanov V, et al. Preliminary feasibility study on differential diagnosis between radiation-induced cerebral necrosis and recurrent brain tumor by means of [ 18 F]fluoro-borono-phenylalanine PET/CT. Ann Nucl Med. 2018;32:702–8.

    PubMed  Google Scholar 

  17. Yoo J, Kim BS, Yoon HJ. Predictive value of primary tumor parameters using 18 F-FDG PET/CT for occult lymph node metastasis in breast cancer with clinically negative axillary lymph node. Ann Nucl Med. 2018;32:642–8.

    PubMed  Google Scholar 

  18. Molina-García D, García-Vicente AM, Pérez-Beteta J, Amo-Salas M, Martínez-González A, Tello-Galán MJ, et al. Intratumoral heterogeneity in 18F-FDG PET/CT by textural analysis in breast cancer as a predictive and prognostic subrogate. Ann Nucl Med. 2018;32:379–88.

    PubMed  Google Scholar 

  19. Parvez A, Tau N, Hussey D, Maganti M, Metser U. 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018;32:410–6.

    CAS  PubMed  Google Scholar 

  20. Komek H, Can C, Yilmaz U, Altindag S. Prognostic value of 68 Ga PSMA I&T PET/CT SUV parameters on survival outcome in advanced prostat cancer. Ann Nucl Med. 2018;32:542–52.

    PubMed  Google Scholar 

  21. Lebasnier A, Legallois D, Bienvenu B, Bergot E, Desmonts C, Zalcman G, et al. Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis. Ann Nucl Med. 2018;32:319–27.

    CAS  PubMed  Google Scholar 

  22. Nakajima K, Okuda K, Watanabe S, Matsuo S, Kinuya S, Toth K, et al. Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med. 2018;32:303–10.

    PubMed  PubMed Central  Google Scholar 

  23. Habert MO, Bertin H, Labit M, Diallo M, Marie S, Martineau K, et al. Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds. Ann Nucl Med. 2018;32:75–86.

    CAS  PubMed  Google Scholar 

  24. Iwabuchi Y, Nakahara T, Kameyama M, Yamada Y, Hashimoto M, Ogata Y, et al. Quantitative evaluation of the tracer distribution in dopamine transporter SPECT for objective interpretation. Ann Nucl Med. 2018;32:363–71.

    CAS  PubMed  Google Scholar 

  25. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun. 2004;25:651–6.

    CAS  PubMed  Google Scholar 

  26. Sollini M, Berchiolli R, Delgado Bolton RC, Rossi A, Kirienko M, Boni R, et al. The “3M” approach to cardiovascular infections: multimodality, multitracers, and multidisciplinary. Semin Nucl Med. 2018;48:199–224.

    PubMed  Google Scholar 

  27. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    CAS  PubMed  Google Scholar 

  28. Huang SC, Hoffman EJ, Phelps ME, Kuh DE. Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr. 1979;3:804–14.

    CAS  PubMed  Google Scholar 

  29. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med. 2002;29:1639–47.

    Google Scholar 

  30. van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, et al. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res. 2013;3:77.

    PubMed  PubMed Central  Google Scholar 

  31. Hofheinz F, van den HJ, Steffen IG, Lougovski A, Ego K, Amthauer H, et al. Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET. EJNMMI Res. 2016;6:53.

    PubMed  PubMed Central  Google Scholar 

  32. van den Hoff J, Lougovski A, Schramm G, Maus J, Oehme L, Petr J, et al. Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Res. 2014;4:18.

    PubMed  PubMed Central  Google Scholar 

  33. Hofheinz F, Bütof R, Apostolova I, Zöphel K, Steffen IG, Amthauer H, et al. An investigation of the relation between tumor-to-liver ratio (TLR) and tumor-to-blood standard uptake ratio (SUR) in oncological FDG PET. EJNMMI Res. 2016;6:19.

    PubMed  PubMed Central  Google Scholar 

  34. Kunikowska J, Matyskiel R, Toutounchi S, Grabowska-Derlatka L, Koperski Ł, Królicki L. What parameters from 18F-FDG PET/CT are useful in evaluation of adrenal lesions? Eur J Nucl Med Mol Imaging. 2014;41:2273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bahce I, Vos CG, Dickhoff C, Hartemink KJ, Dahele M, Smit EF, et al. Metabolic activity measured by FDG PET predicts pathological response in locally advanced superior sulcus NSCLC. Lung Cancer. 2014;85:205–12.

    CAS  PubMed  Google Scholar 

  36. Tournoy KG, Maddens S, Gosselin R, Van Maele G, van Meerbeeck JP, Kelles A. Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study. Thorax. 2007;62:696–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Annunziata S, Cuccaro A, Calcagni ML, Hohaus S, Giordano A, Rufini V. Interim FDG-PET/CT in Hodgkin lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET). Ann Nucl Med. 2016;30:588–92.

    CAS  PubMed  Google Scholar 

  38. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001;42:755–63.

    CAS  PubMed  Google Scholar 

  39. Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imaging. 2013;6:1327–41.

    PubMed  Google Scholar 

  40. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

    CAS  PubMed  Google Scholar 

  41. Slart RHJA, Glaudemans AWJM, Lancellotti P, Hyafil F, Blankstein R, Schwartz RG, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. Eur Heart J Cardiovasc Imaging. 2017;18:1073–89.

    Google Scholar 

  42. Sollini M, Cozzi L, Chiti A, Kirienko M. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol. 2018;99:1–8.

    PubMed  Google Scholar 

  43. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019. https://doi.org/10.1007/s00259-019-04372-x.

  44. Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP, et al. Metrology standards for quantitative imaging biomarkers 1. Radiology. 2015;277:813–25.

    PubMed  Google Scholar 

  45. Zwanenburg A, Leger S, Vallières M, Löck S. Initiative for the IBS. Image biomarker standardisation initiative. 2016.

  46. Reyes DK, Pienta KJ. The biology and treatment of oligometastatic cancer. Oncotarget. 2015;6:8491–524.

    PubMed  PubMed Central  Google Scholar 

  47. Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A, Liu Y, et al. EANM/EARL FDG-PET/CT accreditation – summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45:412–22.

    CAS  PubMed  Google Scholar 

  48. Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med. 2018;1:5.

    PubMed  PubMed Central  Google Scholar 

  49. Stupple A, Singerman D, Celi LA. The reproducibility crisis in the age of digital medicine. NPJ Digit Med. 2019;2:2.

    PubMed  PubMed Central  Google Scholar 

  50. Van de Ven AH, Schomaker MS. Commentary: the rhetoric of evidence-based medicine. Health Care Manag Rev. 2002;27:89–91.

    Google Scholar 

Download references

Acknowledgements

MK PhD scholarship was funded by the AIRC grant IG-2016-18585. We thank all colleagues from the Nuclear Medicine Department of Humanitas Clinical and Research Center for their collaboration and Prof. Carlo Stella for cooperation with the Hematology Department.

Author information

Authors and Affiliations

Authors

Contributions

MS and MK conceptualized the study, MK performed data selection, MS and FB drafted the paper, FB commented on the paper, and MK reviewed the paper; all the authors approved the manuscript.

Corresponding author

Correspondence to Margarita Kirienko.

Ethics declarations

Ethical statement

In view of the nature of the present article (i.e., review), ethical approval was considered unnecessary. Figures are based on anonymized images, taken from existing research database, published with patient consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Image Analyses (Radiomics and Artificial Intelligence)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sollini, M., Bandera, F. & Kirienko, M. Quantitative imaging biomarkers in nuclear medicine: from SUV to image mining studies. Highlights from annals of nuclear medicine 2018. Eur J Nucl Med Mol Imaging 46, 2737–2745 (2019). https://doi.org/10.1007/s00259-019-04531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04531-0

Keywords

Navigation