Skip to main content

Advertisement

Log in

Implementation of the European multicentre database of healthy controls for [123I]FP-CIT SPECT increases diagnostic accuracy in patients with clinically uncertain parkinsonian syndromes

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Even though [123I]FP-CIT SPECT provides high accuracy in detecting nigrostriatal cell loss in neurodegenerative parkinsonian syndromes (PS), some patients with an inconclusive diagnosis remain. We investigated whether the diagnostic accuracy in patients with clinically uncertain PS with previously inconclusive findings can be improved by the use of iterative reconstruction algorithms and an improved semiquantitative evaluation which additionally implemented a correction algorithm for patient age and gamma camera dependency (EARL-BRASS; Hermes Medical Solutions, Sweden).

Methods

We identified 101 patients with inconclusive findings who underwent an [123I]FP-CIT SPECT between 2003 and 2010 as part of the diagnostic process of suspected PS at the University of Munich, and re-evaluated these scans using iterative reconstruction algorithms and the new corrected EARL-BRASS. Clinical follow-up was obtained in 62 out of the 101 patients and constituted the gold standard for the re-evaluation to assess the possible improvement in diagnostic accuracy.

Results

Clinical follow-up confirmed the diagnosis of PS in 11 of the 62 patients. In patients in whom both visual and semiquantitative analysis showed concordant findings (48 patients), a high negative predictive value (93 %), positive predictive value (100 %) and accuracy (94 %) were found, and thus a correct diagnosis was obtained in 45 of the 48 patients. Among the 14 patients with discordant findings, the additional semiquantitative analysis correctly identified all five of nine patients patients without PS by nonpathological semiquantitative findings in visually pathological or inconclusive scans. In contrast, four of the remaining five patients with decreased semiquantitative values but visually normal scans did not show a PS during follow-up.

Conclusion

The age-corrected and camera-corrected mode of evaluation using EARL-BRASS provided a notable improvement in the diagnostic accuracy of [123I]FP-CIT SPECT in PS patients with previously inconclusive findings. The gain in accuracy might be achieved by better discrimination between physiological low striatal [123I]FP-CIT binding due to age-related loss of the dopamine transporter or pathological loss of binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suwijn SR, van Boheemen CJ, de Haan RJ, Tissingh G, Booij J, de Bie RM. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI Res. 2015;5:12. doi:10.1186/s13550-015-0087-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benamer HTS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: The [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10. doi:10.1002/1531-8257(200005)15:3<503::AID-MDS1013>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  3. Darcourt J, Booij J, Tatsch K, Varrone A, Borght T, Kapucu Ö, et al. EANM procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37:443–50. doi:10.1007/s00259-009-1267-x.

    Article  CAS  PubMed  Google Scholar 

  4. McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6:305–13. doi:10.1016/S1474-4422(07)70057-1.

    Article  PubMed  Google Scholar 

  5. Booij J, Speelman J, Horstink MIM, Wolters E. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28:266–72. doi:10.1007/s002590000460.

    Article  CAS  PubMed  Google Scholar 

  6. Scherfler C, Schwarz J, Antonini A, Grosset D, Valldeoriola F, Marek K, et al. Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov Disord. 2007;22:1229–38. doi:10.1002/mds.21505.

    Article  PubMed  Google Scholar 

  7. Hughes AJ, Daniel SE, Ben‐Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain. 2002;125:861–70.

    Article  PubMed  Google Scholar 

  8. Plotkin M, Amthauer H, Klaffke S, Kühn A, Lüdemann L, Arnold G, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm. 2005;112:677–92. doi:10.1007/s00702-004-0208-x.

    Article  CAS  PubMed  Google Scholar 

  9. Catafau AM, Tolosa E. Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain parkinsonian syndromes. Mov Disord. 2004;19:1175–82. doi:10.1002/mds.20112.

    Article  PubMed  Google Scholar 

  10. Tolosa E, Borght TV, Moreno E. Accuracy of DaTSCAN (123I-Ioflupane) SPECT in diagnosis of patients with clinically uncertain parkinsonism: 2-year follow-up of an open-label study. Mov Disord. 2007;22:2346–51. doi:10.1002/mds.21710.

    Article  PubMed  Google Scholar 

  11. Varrone A, Dickson J, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27. doi:10.1007/s00259-012-2276-8.

    Article  CAS  PubMed  Google Scholar 

  12. Koch W, Pogarell O, Pöpperl G, Hornung J, Hamann C, Gildehaus F-J, et al. Extended studies of the striatal uptake of 99mTc-NC100697 in healthy volunteers. J Nucl Med. 2007;48:27–34.

    CAS  PubMed  Google Scholar 

  13. Tossici-Bolt L, Dickson JC, Sera T, de Nijs R, Bagnara MC, Jonsson C, et al. Calibration of gamma camera systems for a multicentre European [123I]-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging. 2011;38:1529–40.

    Article  PubMed  Google Scholar 

  14. Beck AT, Ward C, Mendelson M. Beck depression inventory (BDI). Arch Gen Psychiatry. 1961;4:561–71.

    Article  CAS  PubMed  Google Scholar 

  15. Derogatis LR, Rickels K, Rock AF. The SCL-90 and the MMPI: a step in the validation of a new self-report scale. Br J Psychiatry. 1976;128:280–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kangasmaa T, Sohlberg A, Kuikka JT. Reduction of collimator correction artefacts with bayesian reconstruction in SPECT. Int J Mol Imaging. 2011;2011:630813. doi:10.1155/2011/630813.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koch W, Unterrainer M, Xiong G, Bartenstein P, Diemling M, Varrone A, et al. Extrastriatal binding of [123I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls. Eur J Nucl Med Mol Imaging. 2014;41:1938–46. doi:10.1007/s00259-014-2785-8.

    Article  CAS  PubMed  Google Scholar 

  18. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18:192–205.

    Article  CAS  PubMed  Google Scholar 

  19. Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med. 2005;46:1109–18.

    PubMed  Google Scholar 

  20. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.

    Article  CAS  PubMed  Google Scholar 

  21. Mozley PD, Acton PD, Barraclough ED, Plössl K, Gur RC, Alavi A, et al. Effects of age on dopamine transporters in healthy humans. J Nucl Med. 1999;40:1812–7.

    CAS  PubMed  Google Scholar 

  22. Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K. Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med. 2004;45:1694–7.

    CAS  PubMed  Google Scholar 

  23. la Fougere C, Popperl G, Levin J, Wangler B, Boning G, Uebleis C, et al. The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J Nucl Med. 2010;51:581–7. doi:10.2967/jnumed.109.071811.

    Article  PubMed  Google Scholar 

  24. Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun. 2001;22:721–5.

    Article  CAS  PubMed  Google Scholar 

  25. Marek K, Seibyl J. Beta-CIT scans without evidence of dopaminergic deficit (SWEDD) in the ELLDOPA-CIT and CALM-cit study: long-term imaging assessment. Neurology. 2003;60:A293.

    Google Scholar 

  26. Schwingenschuh P, Ruge D, Edwards MJ, Terranova C, Katschnig P, Carrillo F, et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson’s disease: a clinical and electrophysiological study. Mov Disord. 2010;25:560–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie L. Albert.

Ethics declarations

Conflicts of interest

Markus Diemling is an employee of Hermes Medical Solutions. All other authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure e1

Results of the mere visual evaluation of the previously inconclusive scans (JPG 30 kb)

High Resolution Image (TIF 630 kb)

Figure e2

Results of the mere semi-quantitative ROI-analysis of the previously inconclusive scans. (JPG 26 kb)

High Resolution Image (TIF 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, N.L., Unterrainer, M., Diemling, M. et al. Implementation of the European multicentre database of healthy controls for [123I]FP-CIT SPECT increases diagnostic accuracy in patients with clinically uncertain parkinsonian syndromes. Eur J Nucl Med Mol Imaging 43, 1315–1322 (2016). https://doi.org/10.1007/s00259-015-3304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3304-2

Keywords

Navigation