Skip to main content

Advertisement

Log in

Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

In Alzheimer’s disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, 11C-Pittsburgh compound B ([11C]PIB), several 18F ligands have been developed that circumvent the limitations of [11C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [18F]AV-45 ([18F]florbetapir; Amyvid™), [18F]-BAY94-9172 ([18F]florbetaben; Neuraceq™) and [18F]3′-F-PIB ([18F]flutemetamol; Vizamyl™). The present review aims to summarize and discuss the currently available knowledge on [18F]flutemetamol PET. As the 18F analogue of [11C]PIB, [18F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92. doi:10.1002/ana.22248.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804. doi:10.1056/NEJMoa1202753.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19. doi:10.1002/ana.20009.

    Article  PubMed  CAS  Google Scholar 

  4. US Food and Drug Administration. FDA approves imaging drug Amyvid: estimates brain amyloid plaque content in patients with cognitive decline. 2012. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm299678.htm. Accessed 24 May 2015.

  5. European Medicines Agency. Amyvid: florbetapir (18F). 2013. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002422/human_med_001611.jsp&mid=WC0b01ac058001d124. Accessed 24 May 2015.

  6. US Food and Drug Administration. FDA approves a second amyloid imaging agent. 2013. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm299687.htm. Accessed 24 May 2015.

  7. European Medicines Agency. Neuraceq: florbetaben (18F) Amyvid: florbetapir (18F). 2014. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002553/human_med_001716.jsp&mid=WC0b01ac058001d124. Accessed 24 May 2015.

  8. US Food and Drug Administration. FDA approves second brain imaging drug to help evaluate patients for Alzheimer’s disease, dementia. 2013. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm372261.htm. Accessed 24 May 2015.

  9. European Medicines Agency. Vizamyl: flutemetamol (18F). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002557/WC500172950.pdf. Accessed 24 May 2015.

  10. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7. doi:10.2967/jnumed.112.109009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry. 2012;83:923–6. doi:10.1136/jnnp-2012-302548.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:983–9. doi:10.1007/s00259-012-2088-x.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013;9:e-1–16. doi:10.1016/j.jalz.2013.01.002.

  14. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging. Alzheimers Dement. 2013;9:e106–9. doi:10.1016/j.jalz.2013.06.001.

    Article  PubMed  Google Scholar 

  15. European Medicines Agency. Vizamyl flutemetamol (18F). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion__Initial_authorisation/human/002557/WC500169304.pdf. Accessed 24 May 2015.

  16. General Electric Company. Vizamyl (flutemetamol F 18 injection). 2014. http://www3.gehealthcare.com/en/products/categories/nuclear_imaging_agents/vizamyl. Accessed 24 May 2015.

  17. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407. doi:10.1007/s00259-014-2753-3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mason NS, Mathis CA, Klunk WE. Positron emission tomography radioligands for in vivo imaging of Aβ plaques. J Labelled Comp Radiopharm. 2013;56:89–95. doi:10.1002/jlcr.2989.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Laforce Jr R, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3:31. doi:10.1186/alzrt93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med. 2012;42:423–32. doi:10.1053/j.semnuclmed.2012.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol. 2012;64:27–81. doi:10.1016/B978-0-12-394816-8.00002-7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Catafau AM, Bullich S. Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging. 2015;3:39–55. doi:10.1007/s40336-014-0098-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Lartigue J. Flutemetamol (18F): a β-amyloid positron emission tomography tracer for Alzheimer’s and dementia diagnosis. Drugs Today. 2014;50:219–29. doi:10.1358/dot.2014.50.3.2116672.

    Article  PubMed  Google Scholar 

  24. Mathis CA, Ikonomovic MD, Debnath ML, Hamilton RL, DeKosky ST, Klunk WE. Comparison of the binding of 3′-F-PiB and PiB in human brain homogenates. Neuroimage. 2008;41(Suppl):T113–4. doi:10.1016/j.neuroimage.2008.04.082.

    Article  Google Scholar 

  25. Mathis C, Lopresti B, Mason N, Price J, Flatt N, Bi W, et al. Comparison of the amyloid imaging agents [F-18]3′-F-PIB and [C-11]PIB in Alzheimer’s disease and control subjects. J Nucl Med. 2007;48(Suppl 2):56P.

    Google Scholar 

  26. Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ, et al. Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med. 2009;50:818–22. doi:10.2967/jnumed.108.060756.

    Article  PubMed  CAS  Google Scholar 

  27. Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251–9. doi:10.2967/jnumed.109.063305.

    Article  PubMed  CAS  Google Scholar 

  28. Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Någren KA, Rinne JO. Biodistribution and radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med. 2007;48:128–33.

  29. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. doi:10.1038/sj.jcbfm.9600146.

  30. Groenning M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol. 2010;3:1–18. doi:10.1007/s12154-009-0027-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol. 2015;22:499–505. doi:10.1038/nsmb.2991.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.

    Article  PubMed  Google Scholar 

  33. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29. doi:10.1002/ana.22068.

    Article  PubMed  Google Scholar 

  34. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2014;41:290–300. doi:10.1007/s00259-013-2564-y.

    Article  PubMed  CAS  Google Scholar 

  35. Heurling K, Vandenberghe R, Owenius R, Thurfjell L, Buckley CJ, Brooks DJ. Pons as an alternative reference region in [18F]flutemetamol quantification of amyloidosis. Neuroimage. 2010;52:S137. doi:10.1016/j.neuroimage.2010.04.111.

    Article  Google Scholar 

  36. Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D, et al. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2013;9:295–301. doi:10.1016/j.jalz.2012.01.006.

    Article  PubMed  Google Scholar 

  37. Thurfjell L, Lötjönen J, Lundqvist R, Koikkalainen J, Soininen H, Waldemar G, et al. Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener Dis. 2012;10:246–9.

    Article  PubMed  CAS  Google Scholar 

  38. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Tamminen JN, Tillgren T, et al. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol. 2010;68:446–53. doi:10.1002/ana.22100.

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010;68:535–40. doi:10.1002/ana.22015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rinne JO, Frantzen J, Leinonen V, Lonnrot K, Laakso A, Virtanen KA, et al. Prospective flutemetamol positron emission tomography and histopathology in normal pressure hydrocephalus. Neurodegener Dis. 2014;13:237–45. doi:10.1159/000355256.

    PubMed  Google Scholar 

  41. Wong DF, Moghekar AR, Rigamonti D, Brašić JR, Rousset O, Willis W, et al. An in vivo evaluation of cerebral cortical amyloid with [18F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mol Imaging Biol. 2013;15:230–7. doi:10.1007/s11307-012-0583-x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wolk DA, Grachev ID, Buckley C, Kazi H, Grady MS, Trojanowski JQ, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68:1398–403. doi:10.1001/archneurol.2011.153.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Leinonen V, Rinne JO, Virtanen KA, Eskola O, Rummukainen J, Huttunen J, et al. Positron emission tomography with [18F]flutemetamol and [11C]PiB for in vivo detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. Eur J Neurol. 2013;20:1043–52. doi:10.1111/ene.12102.

    Article  PubMed  CAS  Google Scholar 

  44. Rinne JO, Wong DF, Wolk DA, Leinonen V, Arnold SE, Buckley C, et al. [(18)F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol. 2012;124:833–45. doi:10.1007/s00401-012-1051-z.

    Article  PubMed  CAS  Google Scholar 

  45. Leinonen V, Rinne JO, Wong DF, Wolk D, Trojanowski JQ, Sherwin PF, et al. Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun. 2014;2:46. doi:10.1186/2051-5960-2-46.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.

  47. Thal DR, Beach TG, Zanetti M, Heurling K, Buckley C, Smith A. Diagnostic value of [18F]flutemetamol amyloid PET: comparison between imaging and neuropathology. Neurobiol Aging. 2014;35:S22. doi:10.1016/j.neurobiolaging.2014.01.115.

    Article  Google Scholar 

  48. Buckley C, Ikonomovic M, Smith A, Heurling K, Farrar G, Brooks D, et al. Flutemetamol F 18 injection PET images reflect brain beta-amyloid levels. Alzheimers Dement. 2014;8:P90. doi:10.1016/j.jalz.2012.05.221.

    Article  Google Scholar 

  49. Thal D, Beach TG, Zanette M, Heurling K, Buckley C, Smith A. [18F]flutemetamol amyloid PET in symptomatic Alzheimer’s disease (AD) and pathologically preclinical AD (P-PREAD) in comparison to non-AD controls: impact of cerebral amyloid angiopathy. Alzheimers Dement. 2014;10:P130. doi:10.1016/j.jalz.2014.04.060.

  50. Wolk DA, Duara R, Sadowsky C. [18F]flutemetamol amyloid PET imaging: outcome of a phase III study in subjects with amnestic mild cognitive impairment after a 3-year follow-up. Alzheimers Dement. 2014;10:P898. doi:10.1016/j.jalz.2014.07.079.

    Article  Google Scholar 

  51. Senda M, Sasaki M, Fujikawa K, Paterson C, McParland B. Biodistribution and radiation dosimetry of flutemetamol (18F) injection in Japanese healthy volunteers. J Nucl Med. 2012;53:1510.

    Google Scholar 

  52. Sherwin P, Wolber J, Longenecker F, Clark P, Smith A, Nicolas F, et al. Effectiveness of an electronic training program to teach interpretation of [18F]flutemetamol PET amyloid images. Hum Amyloid Imaging Meet. 2013:P57-P.

  53. Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage. 2013;64:517–25. doi:10.1016/j.neuroimage.2012.09.015.

    Article  PubMed  Google Scholar 

  54. Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8. doi:10.2967/jnumed.114.142109.

    Article  PubMed  CAS  Google Scholar 

  55. Lundqvist R, Lilja J, Thomas BA, Lötjönen J, Villemagne VL, Rowe CC, et al. Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. J Nucl Med. 2013;54:1472–8. doi:10.2967/jnumed.112.115006.

    Article  PubMed  CAS  Google Scholar 

  56. Snellman A, Rokka J, Lopez-Picon F, Eskola O, Wilson I, Farrar G, et al. Pharmacokinetics of [18F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1784–95. doi:10.1007/s00259-012-2178-9.

    Article  PubMed  CAS  Google Scholar 

  57. Snellman A, Rokka J, López-Picón F, Eskola O, Salmona M, Forloni G, et al. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer’s disease with a high specific activity PET imaging agent [18F]flutemetamol. EJNMMI Res. 2014;4:37. doi:10.1186/s13550-014-0037-3.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Adamczuk K, De Weer A-S, Nelissen N, Chen K, Sleegers K, Bettens K, et al. Polymorphism of brain derived neurotrophic factor influences β amyloid load in cognitively intact apolipoprotein E ε4 carriers. Neuroimage Clin. 2013;2:512–20. doi:10.1016/j.nicl.2013.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adamczuk K, De Weer A-S, Nelissen N, Dupont P, Sunaert S, Bettens K, et al. Functional changes in the language network in response to increased amyloid β deposition in cognitively intact older adults. Cereb Cortex. 2014. doi:10.1093/cercor/bhu286.

    PubMed  Google Scholar 

  60. Duff K, Foster NL, Dennett K, Hammers DB, Zollinger LV, Christian PE, et al. Amyloid deposition and cognition in older adults: the effects of premorbid intellect. Arch Clin Neuropsychol. 2013;28:665–71. doi:10.1093/arclin/act047.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 2014;71:1282–9.

    Article  PubMed  Google Scholar 

  62. Lautner R, Palmqvist S, Mattsson N, Andreasson U, Wallin A, Pålsson E, et al. Apolipoprotein E genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for Alzheimer disease. JAMA Psychiatry. 2014;71:1183–91.

    Article  PubMed  Google Scholar 

  63. Ivanoiu A, Dricot L, Gilis N, Grandin C, Lhommel R, Quenon L, et al. Classification of non-demented patients attending a memory clinic using the new diagnostic criteria for Alzheimer’s disease with disease-related biomarkers. J Alzheimers Dis. 2015;43:835–47. doi:10.3233/JAD-140651.

    PubMed  Google Scholar 

  64. Pietrzak RH, Lim YY, Neumeister A, Ames D, Ellis K, Harrington K, et al. Amyloid-β, anxiety, and cognitive decline in preclinical Alzheimer disease: a multicenter prospective cohort study. JAMA Psychiatry. 2015;72:284–91. doi:10.1001/jamapsychiatry.2014.2476.

  65. US Food and Drug Administration. FDA prescribing information for Amyvid. 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf. Accessed 24 Mar 2015.

  66. European Medicines Agency. EMA SPC for Amyvid. 2014. http://ec.europa.eu/health/documents/communityregister/2014/20140627129117/anx_129117_en.pdf. Accessed 24 May 2015.

  67. US Food and Drug Administration. FDA prescribing information for Neuraceq. 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf. Accessed 24 Mar 2015.

  68. European Medicines Agency. SPC for Neuraceq. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002553/WC500162592.pdf. Accessed 24 May 2015.

  69. US Food and Drug Administration. FDA prescribing information for Vizamyl. 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203137s000lbl.pdf. Accessed 24 Mar 2015.

  70. European Medicines Agency. EMA summary of product characteristics (SPC) for Vizamyl. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002557/WC500172950.pdf. Accessed 24 May 2015.

  71. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous Sr MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1-15.e1–4. doi:10.1016/j.jalz.2014.07.003. e1-4.

  72. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60. doi:10.1212/WNL.0b013e3181b23564.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Koivunen J, Scheinin N, Virta JR, Aalto S, Vahlberg T, Någren K, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90. doi:10.1212/WNL.0b013e318212015e.

    Article  PubMed  CAS  Google Scholar 

  74. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65:557–68. doi:10.1002/ana.21598.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65. doi:10.1016/j.neurobiolaging.2007.03.029.

    Article  PubMed  CAS  Google Scholar 

  76. Zwan MD, Bouwman FH, Van der Flier WM, Lammertsma A, Berckel BV, Scheltens P. Diagnostic value of amyloid imaging in early onset dementia. Alzheimers Dement. 10:P248. doi: 10.1016/j.jalz.2014.04.384.

  77. Galton CJ, Patterson K, Xuereb JH, Hodges JR. Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000;123(Pt 3):484–98.

    Article  PubMed  Google Scholar 

  78. Graham A, Davies R, Xuereb J, Halliday G, Kril J, Creasey H, et al. Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain. 2005;128:597–605. doi:10.1093/brain/awh348.

    Article  PubMed  Google Scholar 

  79. Chiotis K, Carter SF, Farid K, Savitcheva I, Nordberg A, Diagnostic Molecular Imaging (DiM) network and the Alzheimer’s Disease Neuroimaging Initiative. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging. Eur J Nucl Med Mol Imaging. 2015;42:1492–506. doi:10.1007/s00259-015-3115-5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, et al. Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging. 2005;26:1183–92. doi:10.1016/j.neurobiolaging.2004.10.006.

    Article  PubMed  CAS  Google Scholar 

  81. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7. doi:10.2967/jnumed.111.089730.

    Article  PubMed  Google Scholar 

  82. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38:938–49. doi:10.1038/npp.2012.255.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Gomperts SN, Locascio JJ, Marquie M, Santarlasci AL, Rentz DM, Maye J, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord. 2012;27:965–73. doi:10.1002/mds.25048.

    Article  PubMed  PubMed Central  Google Scholar 

  84. US National Institutes of Health. Clinical trials involving [18F]flutemetamol PET. 2014. https://clinicaltrials.gov/ct2/results?term=flutemetamol&Search=Search CT. Accessed 24 May 2015.

  85. Faria Dde P, Copray S, Sijbesma JW, Willemsen AT, Buchpiguel CA, Dierckx RA, et al. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur J Nucl Med Mol Imaging. 2014;41:995–1003. doi:10.1007/s00259-013-2682-6.

    Article  PubMed  Google Scholar 

  86. Glodzik L, Rusinek H, Li J, Zhou C, Tsui W, Mosconi L, et al. Reduced retention of Pittsburgh compound B in white matter lesions. Eur J Nucl Med Mol Imaging. 2015;42:97–102. doi:10.1007/s00259-014-2897-1.

    Article  PubMed  Google Scholar 

  87. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(11)C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80. doi:10.1002/ana.22320.

  88. Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004;35:503–42. doi:10.1016/j.micron.2004.04.005.

    Article  PubMed  CAS  Google Scholar 

  89. Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li QX, Masters CL, et al. Characterization of PiB binding to white matter in Alzheimer disease and other dementias. J Nucl Med. 2009;50:198–204. doi:10.2967/jnumed.108.057984.

    Article  PubMed  Google Scholar 

  90. Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL. Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology. 1990;9:233–42.

    Article  PubMed  CAS  Google Scholar 

  91. Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, et al. Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case–control studies. EURODEM Risk Factors Research Group. Int J Epidemiol. 1991;20 Suppl 2:S28–35.

    Article  PubMed  Google Scholar 

  92. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74:857–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55:1158–66.

    Article  PubMed  CAS  Google Scholar 

  94. Lye TC, Shores EA. Traumatic brain injury as a risk factor for Alzheimer’s disease: a review. Neuropsychol Rev. 2000;10:115–29.

    Article  PubMed  CAS  Google Scholar 

  95. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994;57:419–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64. doi:10.1093/brain/aws307.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71:23–31. doi:10.1001/jamaneurol.2013.4847.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kawai N, Kawanishi M, Kudomi N, Maeda Y, Yamamoto Y, Nishiyama Y, et al. Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh compound-B. Brain Inj. 2013;27:1026–31. doi:10.3109/02699052.2013.794963.

    Article  PubMed  Google Scholar 

  99. Mitsis EM, Riggio S, Kostakoglu L, Dickstein DL, Machac J, Delman B, et al. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry. 2014;4:e441. doi:10.1038/tp.2014.91.

  100. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54:213–20. doi:10.2967/jnumed.111.102053.

    Article  PubMed  CAS  Google Scholar 

  101. Lhommel R, Sempoux C, Ivanoiu A, Michaux L, Gerber B. Is 18F-flutemetamol PET/CT able to reveal cardiac amyloidosis? Clin Nucl Med. 2014;39:747–9. doi:10.1097/RLU.0000000000000492.

    Article  PubMed  Google Scholar 

  102. Alzforum. Biogen antibody buoyed by phase 1 data and hungry investors. 2015. http://www.alzforum.org/news/conference-coverage/biogen-antibody-buoyed-phase-1-data-and-hungry-investors. Accessed 25 May 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Heurling.

Ethics declarations

Conflicts of interest

KH is a former employee at GE Healthcare (Uppsala, Sweden). AL, ERZ, ML and AN declare no competing interests.

Additional information

Kerstin Heurling and Antoine Leuzy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heurling, K., Leuzy, A., Zimmer, E.R. et al. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging 43, 362–373 (2016). https://doi.org/10.1007/s00259-015-3208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3208-1

Keywords

Navigation