Skip to main content

Advertisement

Log in

Update of pediatric bone tumors—other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

There are numerous bone tumors in the pediatric population, with imaging playing an essential role in diagnosis and management. Our understanding of certain bone tumors has rapidly evolved over the past decade with advancements in next-generation genetic sequencing techniques. This increased level of understanding has altered the nomenclature, management approach, and prognosis of certain lesions. We provide a detailed update of bone tumors that occur in the pediatric population with emphasis on the recently released nomenclature provided in the 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumours. We discuss other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone. We have detailed osteogenic tumors and osteoclastic giant cell-rich tumors, as well as notochordal tumors, chondrogenic tumors, and vascular tumors of the bone in separate manuscripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. WHO Classification: of Tumours Editorial Board. WHO Classification of Tumours Editorial Board: Soft Tissue and Bone Tumours. 5th ed. Lyon (France): International Agency for Research on Cancer; 2020.

  2. Choi JH, Ro JY. The 2020 WHO Classification of Tumors of Bone: an updated review. Adv Anat Pathol. 2021;28:119–38.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology. 2021;78:644–57.

    Article  PubMed  Google Scholar 

  4. Al-Dasuqi K, Cheng R, Moran J, Irshaid L, Maloney E, Porrino J. Update of pediatric bone tumors: osteogenic tumors and osteoclastic giant cell-rich tumors. Skeletal Radiol. https://doi.org/10.1007/s00256-022-04221-3. Accessed 3 Nov 2022.

  5. Lee H, Wang A, Cheng R, Moran J, Al-Dasuqi K, Irshaid L, Maloney E, Porrino J. Update of pediatric bone tumors-notochordal tumors, chondrogenic tumors, and vascular tumors of the bone. Skeletal Radiol. https://doi.org/10.1007/s00256-022-04235-x. Accessed 11 Nov 2022.

  6. Gleason BC, Liegl-Atzwanger B, Kozakewich HP, Connolly S, Gebhardt MC, Fletcher JA, et al. Osteofibrous dysplasia and adamantinoma in children and adolescents: a clinicopathologic reappraisal. Am J Surg Pathol. 2008;32:363–76.

    Article  PubMed  Google Scholar 

  7. Hazelbag HM, Wessels JW, Mollevangers P, van den Berg E, Molenaar WM, Hogendoorn PC. Cytogenetic analysis of adamantinoma of long bones: further indications for a common histogenesis with osteofibrous dysplasia. Cancer Genet Cytogenet. 1997;97:5–11.

    Article  CAS  PubMed  Google Scholar 

  8. Bone Tumor Pathology, An Issue of Surgical Pathology Clinics, 1st Edition: Edited by Gunnlaugur Petur Nielsen, MD. Elsevier; 240. Accessed 9 Nov 2021.

  9. Park JW, Lee C, Han I, Cho H-S, Kim H-S. Optimal Treatment of Osteofibrous Dysplasia of the Tibia. J Pediatr Orthop. 2018;38:e404–10.

    Article  PubMed  Google Scholar 

  10. Westacott D, Kannu P, Stimec J, Hopyan S, Howard A. Osteofibrous dysplasia of the tibia in children: outcome without resection. J Pediatr Orthop. 2019;39:e614–21.

    Article  PubMed  Google Scholar 

  11. Scholfield DW, Sadozai Z, Ghali C, Sumathi V, Douis H, Gaston L, et al. Does osteofibrous dysplasia progress to adamantinoma and how should they be treated? Bone Joint J. 2017;99-B:409–16.

  12. Kitsoulis P, Charchanti A, Paraskevas G, Marini A, Karatzias G. Adamantinoma. Acta Orthop Belg. 2007;73:425–31.

    PubMed  Google Scholar 

  13. Varvarousis DN, Skandalakis GP, Barbouti A, Papathanakos G, Filis P, Tepelenis K, et al. Adamantinoma: an updated review. In Vivo. 2021;35:3045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hazelbag HM, Laforga JB, Roels HJL, Hogendoorn PCW. Dedifferentiated adamantinoma with revertant mesenchymal phenotype. Am J Surg Pathol. 2003;27:1530–7.

    Article  PubMed  Google Scholar 

  15. Kashima TG, Dongre A, Flanagan AM, Hogendoorn PCW, Taylor R, Athanasou NA. Podoplanin expression in adamantinoma of long bones and osteofibrous dysplasia. Virchows Arch. 2011;459:41–6.

    Article  CAS  PubMed  Google Scholar 

  16. Dickson BC, Gortzak Y, Bell RS, Ferguson PC, Howarth DJC, Wunder JS, et al. p63 expression in adamantinoma. Virchows Arch. 2011;459:109–13.

    Article  CAS  PubMed  Google Scholar 

  17. Schutgens EM, Picci P, Baumhoer D, Pollock R, Bovée JVMG, Hogendoorn PCW, et al. Surgical Outcome and oncological survival of osteofibrous dysplasia-like and classic adamantinomas: an international multicenter study of 318 cases. J Bone Joint Surg Am. 2020;102:1703–13.

    Article  CAS  PubMed  Google Scholar 

  18. Khanna M, Delaney D, Tirabosco R, Saifuddin A. Osteofibrous dysplasia, osteofibrous dysplasia-like adamantinoma and adamantinoma: correlation of radiological imaging features with surgical histology and assessment of the use of radiology in contributing to needle biopsy diagnosis. Skeletal Radiol. 2008;37:1077–84.

    Article  PubMed  Google Scholar 

  19. Unni, KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases, ed 5. Philadelphia: Lippincott-Raven; 1996. pp. 463.

  20. Van der Woude H-J, Hazelbag H-M, Bloem JL, Taminiau AHM, Hogendoorn PCW. MRI of adamantinoma of long bones in correlation with histopathology. AJR Am J Roentgenol. 2004;183:1737–44.

    Article  PubMed  Google Scholar 

  21. Aytekin MN, Öztürk R, Amer K. Epidemiological study of adamantinoma from US surveillance, epidemiology, and end results program: III retrospective analysis. J Oncol. 2020;2020:2809647.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deng Z, Gong L, Zhang Q, Hao L, Ding Y, Niu X. Outcome of osteofibrous dysplasia-like versus classic adamantinoma of long bones: a single-institution experience. J Orthop Surg Res. 2020;15:268.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, et al. FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol. 2020;44:1623–34.

    Article  PubMed  Google Scholar 

  24. Haidar SG, Culliford DJ, Gent ED, Clarke NMP. Distance from the growth plate and Its relation to the outcome of unicameral bone cyst treatment. J Child Orthop. 2011;5:151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mascard E, Gomez-Brouchet A, Lambot K. Bone cysts: unicameral and aneurysmal bone cyst. Orthop Traumatol Surg Res. 2015;101:S119–127.

    Article  CAS  PubMed  Google Scholar 

  26. Kushchayeva YS, Kushchayev SV, Glushko TY, Tella SH, Teytelboym OM, Collins MT, et al. Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging. 2018;9:1035–56.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harris WH, Dudley HR, Barry RJ. The natural history of fibrous dysplasia. An orthopaedic, pathological, and roentgenographic study. J Bone Joint Surg Am. 1962;44-A:207–33.

  28. Tafti D, Cecava N. Fibrous Dysplasia [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532947/. Accessed 3 Oct 2022.

  29. Kuznetsov SA, Cherman N, Riminucci M, Collins MT, Robey PG, Bianco P. Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J Bone Miner Res. 2008;23:1731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burke AB, Collins MT, Boyce AM. Fibrous dysplasia of bone: craniofacial and dental implications. Oral Dis. 2017;23:697–708.

    Article  CAS  PubMed  Google Scholar 

  31. Javaid MK, Boyce A, Appelman-Dijkstra N, Ong J, Defabianis P, Offiah A, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14:139.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jee WH, Choe BY, Kang HS, Suh KJ, Suh JS, Ryu KN, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology. 1998;209:197–202.

    Article  CAS  PubMed  Google Scholar 

  33. Samet J, Weinstein J, Fayad LM. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything? Skeletal Radiol. 2016;45:607–13.

    Article  PubMed  Google Scholar 

  34. Singh J, Rajakulasingam R, Saifuddin A. Langerhans cell histiocytosis of the shoulder girdle, pelvis and extremities: a review of radiographic and MRI features in 85 cases. Skeletal Radiol. 2020;49:1925–37.

    Article  CAS  PubMed  Google Scholar 

  35. Nagy A, Somers GR. Round cell sarcomas: newcomers and diagnostic approaches. Surg Pathol Clin. 2020;13:763–82.

    Article  PubMed  Google Scholar 

  36. Davis JL, Rudzinski ER. Small round blue cell sarcoma other than ewing sarcoma: what should an oncologist know? Curr Treat Options Oncol. 2020;21:90.

    Article  PubMed  Google Scholar 

  37. Sbaraglia M, Righi A, Gambarotti M, Dei Tos AP. Ewing sarcoma and Ewing-like tumors. Virchows Arch. 2020;476:109–19.

    Article  CAS  PubMed  Google Scholar 

  38. Tsuda Y, Zhang L, Meyers P, Tap WD, Healey JH, Antonescu CR. The clinical heterogeneity of round cell sarcomas with EWSR1/FUS gene fusions: impact of gene fusion type on clinical features and outcome. Genes Chromosomes Cancer. 2020;59:525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riggi N, Suvà ML, Stamenkovic I. Ewing’s sarcoma. N Engl J Med. 2021;384:154–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kimbara S, Imamura Y, Kiyota N, Takakura H, Matsumoto S, Koyama T, et al. Secondary CIC-rearranged sarcoma responsive to chemotherapy regimens for Ewing sarcoma: a case report. Mol Clin Oncol. 2021;14:68.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brady EJ, Hameed M, Tap WD, Hwang S. Imaging features and clinical course of undifferentiated round cell sarcomas with CIC-DUX4 and BCOR-CCNB3 translocations. Skeletal Radiol. 2021;50:521–9.

    Article  PubMed  Google Scholar 

  42. Sirisena UDN, Rajakulasingam R, Saifuddin A. Imaging of bone and soft tissue BCOR-rearranged sarcoma. Skeletal Radiol. 2021;50:1291–301.

    Article  PubMed  Google Scholar 

  43. Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33:803–31.

    Article  PubMed  Google Scholar 

  44. Schaefer I-M, Hornick JL. Diagnostic immunohistochemistry for soft tissue and bone tumors: an update. Adv Anat Pathol. 2018;25:400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, et al. Ewing Sarcoma-diagnosis, treatment, clinical challenges and future perspectives. J Clin Med. 2021;10:1685.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol. 2019;90:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antonescu CR, Kao Y-C, Xu B, Fujisawa Y, Chung C, Fletcher CDM, et al. Undifferentiated round cell sarcoma with BCOR internal tandem duplications (ITD) or YWHAE fusions: a clinicopathologic and molecular study. Mod Pathol. 2020;33:1669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kyriazoglou A, Tourkantoni N, Liontos M, Zagouri F, Mahaira L, Papakosta A, et al. A case series of BCOR sarcomas with a new splice variant of BCOR/CCNB3 fusion gene. In Vivo. 2020;34:2947–54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Porrino.

Ethics declarations

Consent for publication

All authors have agreed to approval of the most current version to be published and agree to be accountable for all aspects of the work if questions were to arise related to its accuracy or integrity.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Maloney, E., Al-Dasuqi, K. et al. Update of pediatric bone tumors—other mesenchymal tumors of bone, hematopoietic neoplasms of bone, and WHO classification of undifferentiated small round cell sarcomas of bone. Skeletal Radiol 52, 1443–1463 (2023). https://doi.org/10.1007/s00256-023-04286-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04286-8

Keywords

Navigation