Skip to main content

Advertisement

Log in

Sclerotic bone lesions caused by non-infectious and non-neoplastic diseases: a review of the imaging and clinicopathologic findings

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Bone sclerosis is a focal, multifocal, or diffuse increase in the density of the bone matrix on radiographs or computed tomography (CT) imaging. This radiological finding can be caused by a broad spectrum of diseases, such as congenital and developmental disorders, depositional disorders, and metabolic diseases. The differential diagnosis can be effectively narrowed by an astute radiologist in the light of the clinical picture and typical findings on imaging. Some of these lesions are rare and have been described as case reports and series in the literature. This article aims to collate the clinical-radiologic findings of non-infectious and non-neoplastic causes of bone sclerosis with relevant imaging illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Awan O, Wu JS, Eisenberg RL. Imaging of multifocal and diffuse sclerotic bone lesions. Contemp Diagn Radiol. 2015;38(6):1–7.

    Google Scholar 

  2. Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.

    PubMed  Google Scholar 

  3. Agrawal A, Purandare N, Shah S, Rangarajan V. Metastatic mimics on bone scan: “all that glitters is not metastatic”. Indian J Nucl Med. 2016;31(3):185–90.

    PubMed  PubMed Central  Google Scholar 

  4. Kogan F, Broski SM, Yoon D, Gold GE. Applications of PET-MRI in musculoskeletal disease. J Magn Reson Imaging. 2018;48(1):27–47.

    PubMed  PubMed Central  Google Scholar 

  5. Bernard S, Walker E, Raghavan M. An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies. AJR Am J Roentgenol. 2017;208(5):960–70.

    PubMed  Google Scholar 

  6. Carlson ML, Beatty CW, Neff BA, Link MJ, Driscoll CLW. Skull base manifestations of Camurati-Engelmann disease. Arch Otolaryngol Head Neck Surg. 2010;136(6):566–75.

    PubMed  Google Scholar 

  7. Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006;43(1):1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallace SE, Wilcox WR. Camurati-Engelmann Disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., eds. GeneReviews((R)). Seattle (WA); 1993.

  9. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006;43(4):315–25.

    PubMed  Google Scholar 

  10. Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009;4(1):5.

    PubMed  PubMed Central  Google Scholar 

  11. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29.

    PubMed  Google Scholar 

  12. Bollerslev J, Andersen PE Jr. Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone. 1988;9(1):7–13.

    CAS  PubMed  Google Scholar 

  13. Mugera C, Suh KJ, Huisman TAGM, Weber K, Belzberg AJ, Carrino JA, et al. Sclerotic lesions of the spine: MRI assessment. J Magn Reson Imaging. 2013;38(6):1310–24.

    PubMed  Google Scholar 

  14. Khoja A, Fida M, Shaikh A. Pycnodysostosis with special emphasis on dentofacial characteristics. Case Rep Dent. 2015;2015:817989.

    PubMed  PubMed Central  Google Scholar 

  15. Ihde LL, Forrester DM, Gottsegen CJ, Masih S, Patel DB, Vachon LA, et al. Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis. Radiographics. 2011;31(7):1865–82.

    PubMed  Google Scholar 

  16. Ramaiah KKK, George GB, Padiyath S, Sethuraman R, Cherian B. Pyknodysostosis: report of a rare case with review of literature. Imaging Sci Dent. 2011;41(4):177–81.

    PubMed  PubMed Central  Google Scholar 

  17. Viot G, Lacombe D, David A, Mathieu M, de Broca A, Faivre L, et al. Osteopathia striata cranial sclerosis: non-random X-inactivation suggestive of X-linked dominant inheritance. Am J Med Genet. 2002;107(1):1–4.

    PubMed  Google Scholar 

  18. Seeger LL, Hewel KC, Yao L, Gold RH, Mirra JM, Chandnani VP, et al. Ribbing disease (multiple diaphyseal sclerosis): imaging and differential diagnosis. AJR Am J Roentgenol. 1996;167(3):689–94.

    CAS  PubMed  Google Scholar 

  19. Cai Y, Lin H, Huang F, Zheng X, Huang Y, Zhang S. Imaging features and differential diagnosis of multiple diaphyseal sclerosis: a case report and review of literature. Medicine (Baltimore). 2018;97(33):e11725.

    Google Scholar 

  20. Sakamoto A, Oda Y, Iwamoto Y, Tsuneyoshi M. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to Gsalpha mutation at the Arg201 codon: polymerase chain reaction-restriction fragment length polymorphism analysis of paraffin-embedded tissues. J Mol Diagn. 2000;2(2):67–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Campanacci M. Osteofibrous dysplasia of long bones a new clinical entity. Ital J Orthop Traumatol. 1976;2(2):221–37.

    CAS  PubMed  Google Scholar 

  22. Scholfield DW, Sadozai Z, Ghali C, Sumathi V, Douis H, Gaston L, et al. Does osteofibrous dysplasia progress to adamantinoma and how should they be treated? Bone Joint J. 2017;99-B(3):409–16.

    CAS  PubMed  Google Scholar 

  23. Jung J-Y, Jee W-H, Hong SH, Kang HS, Chung HW, Ryu K-N, et al. MR findings of the osteofibrous dysplasia. Korean J Radiol. 2014;15(1):114–22.

    PubMed  PubMed Central  Google Scholar 

  24. Adetayo OA, Salcedo SE, Borad V, Richards SS, Workman AD, Ray AO. Fibrous dysplasia: an overview of disease process, indications for surgical management, and a case report. Eplasty. 2015;15:e6.

    PubMed  PubMed Central  Google Scholar 

  25. Mohan H, Mittal P, Mundi I, Kumar S. Fibrous dysplasia of bone: a clinicopathologic review. Pathol Lab Med Int. 2011;3:3–31.

    Google Scholar 

  26. Gwark J-Y, Jeong J-H, Hwang S-C, Nam D-C, Lee J-H, Na J-B, et al. Monostotic fibrous dysplasia in the proximal tibial epiphysis: a case report. J Med Case Rep. 2014;8:452.

    PubMed  PubMed Central  Google Scholar 

  27. Wordsworth P, Chan M. Melorheostosis and osteopoikilosis: a review of clinical features and pathogenesis. Calcif Tissue Int. 2019;104(5):530–43.

    CAS  PubMed  Google Scholar 

  28. Franca PM, Ferrreira CS, Figueiredo R, Matushita JP. Melorheostosis. Radiol Bras. 2015;48(1):60–1.

    PubMed  PubMed Central  Google Scholar 

  29. Roberts NM, Langtry JAA, Branfoot AC, Gleeson J, Staughton RCD. Osteopoikilosis and the Buschke–Ollendorff syndrome. Br J Radiol. 1993;66(785):468–70.

    CAS  PubMed  Google Scholar 

  30. Krishna D, Chand S. Osteopoikilosis: a case report with review of literature. J Orthop Traumatol Rehabil. 2013;6(1):84–6.

    Google Scholar 

  31. Negi RS, Manchanda KL, Sanga S, Chand S, Goswami G. Osteopoikilosis - spotted bone disease. Med J Armed Forces India. 2013;69(2):196–8.

    CAS  PubMed  Google Scholar 

  32. Itzchaki M, Lebel E, Dweck A, Patlas M, Hadas-Halpern I, Zimran A, et al. Orthopedic considerations in Gaucher disease since the advent of enzyme replacement therapy. Acta Orthop Scand. 2004;75(6):641–53.

    PubMed  Google Scholar 

  33. Mikosch P, Hughes D. An overview on bone manifestations in Gaucher disease. Wien Med Wochenschr. 2010;160(23–24):609–24.

    PubMed  Google Scholar 

  34. Katz R, Booth T, Hargunani R, Wylie P, Holloway B. Radiological aspects of Gaucher disease. Skelet Radiol. 2011;40(12):1505–13.

    Google Scholar 

  35. Mucci JM, Rozenfeld P. Pathogenesis of bone alterations in Gaucher disease: the role of immune system. J Immunol Res. 2015;2015:1–6.

    Google Scholar 

  36. Maas M, van Kuijk C, Stoker J, Hollak CEM, Akkerman EM, Aerts JFMG, et al. Quantification of bone involvement in Gaucher disease: MR imaging bone marrow burden score as an alternative to Dixon quantitative chemical shift MR imaging—initial experience. Radiology. 2003;229(2):554–61.

    PubMed  Google Scholar 

  37. Maas M, Poll LW, Terk MR. Imaging and quantifying skeletal involvement in Gaucher disease. Br J Radiol. 2002;75(suppl_1):A13–24.

    PubMed  Google Scholar 

  38. Wagner N, Staubach P. Mastocytosis - pathogenesis, clinical manifestation and treatment. J Dtsch Dermatol Ges. 2018;16(1):42–57.

    PubMed  Google Scholar 

  39. Lange M, Nedoszytko B, Górska A, Zawrocki A, Sobjanek M, Kozlowski D. Mastocytosis in children and adults: clinical disease heterogeneity. Arch Med Sci. 2012;8(3):533–41.

    PubMed  PubMed Central  Google Scholar 

  40. Delsignore JL, Dvoretsky PM, Hicks DG, O'Keefe RJ, Rosier RN. Mastocytosis presenting as a skeletal disorder. Iowa Orthop J. 1996;16:126–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roca M, Mota J, Giraldo P, García Erce JA. Systemic mastocytosis: MRI of bone marrow involvement. Eur Radiol. 1999;9(6):1094–7.

    CAS  PubMed  Google Scholar 

  42. Haney K, Russell W, Raila FA, Brower AC, Harrison RB. MRI characteristics of systemic mastocytosis of the lumbosacral spine. Skelet Radiol. 1996;25(2):171–3.

    CAS  Google Scholar 

  43. Chen CC, Andrich MP, Mican JM, Metcalfe DD, CCC MPA, et al. A retrospective analysis of bone scan abnormalities in mastocytosis: correlation with disease category and prognosis. J Nucl Med. 1994;35(9):1471–5.

    CAS  PubMed  Google Scholar 

  44. Avila NA, Ling A, Metcalfe DD, Worobec AS. Mastocytosis: magnetic resonance imaging patterns of marrow disease. Skelet Radiol. 1998;27(3):119–26.

    CAS  Google Scholar 

  45. Nguyen BD. CT and scintigraphy of aggressive lymphadenopathic mastocytosis. AJR Am J Roentgenol. 2002;178(3):769–70.

    PubMed  Google Scholar 

  46. Sidhu HS, Venkatanarasimha N, Bhatnagar G, Vardhanabhuti V, Fox BM, Suresh SP. Imaging features of therapeutic drug-induced musculoskeletal abnormalities. Radiographics. 2012;32(1):105–27.

    PubMed  Google Scholar 

  47. Chang CY, Rosenthal DI, Mitchell DM, Handa A, Kattapuram SV, Huang AJ. Imaging findings of metabolic bone disease. Radiographics. 2016;36(6):1871–87.

    PubMed  Google Scholar 

  48. Hayami N, Hoshino J, Suwabe T, Sumida K, Mise K, Hamanoue S, et al. Destructive spondyloarthropathy in patients on long-term peritoneal dialysis or hemodialysis. Ther Apher Dial. 2015;19(4):393–8.

    PubMed  Google Scholar 

  49. Jevtic V. Imaging of renal osteodystrophy. Eur J Radiol. 2003;46(2):85–95.

    CAS  PubMed  Google Scholar 

  50. Reddy D. Neurology of endemic skeletal fluorosis. Neurol India. 2009;57(1):7–7.

    PubMed  Google Scholar 

  51. Kurdi MS. Chronic fluorosis: the disease and its anaesthetic implications. Indian J Anaesth. 2016;60(3):157–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Yin Y, Gilula LA, Wilson AJ. Endemic fluorosis of the skeleton: radiographic features in 127 patients. AJR Am J Roentgenol. 1994;162(1):93–8.

    CAS  PubMed  Google Scholar 

  53. Gupta N, Gupta N, Chhabra P. Image diagnosis: dental and skeletal fluorosis. Perm J. 2016;20(1):e105.

    PubMed  PubMed Central  Google Scholar 

  54. Soriano M, Manchón F. Radiological aspects of a new type of bone fluorosis. Periostitis Deformans Radiology. 1966;87(6):1089–94.

    CAS  PubMed  Google Scholar 

  55. Krishnamachari KA. Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease. Prog Food Nutr Sci. 1986;10(3–4):279–314.

    CAS  PubMed  Google Scholar 

  56. Ahmed I, Sohail S, Hussain M, Khan N, Hameed KM. MRI features of spinal fluorosis: results of an endemic community screening. Pak J Med Sci. 2013;29(1):177–80.

    PubMed  PubMed Central  Google Scholar 

  57. Theodorou DJ, Theodorou SJ, Kakitsubata Y. Imaging of Paget disease of bone and its musculoskeletal complications: review. AJR Am J Roentgenol. 2011;196(6 Suppl):S64–75.

    PubMed  Google Scholar 

  58. Bouchette P, Boktor SW. Paget disease. Treasure Island (FL): StatPearls; 2020.

    Google Scholar 

  59. Mazor RD, Manevich-Mazor M, Shoenfeld Y. Erdheim-Chester disease: a comprehensive review of the literature. Orphanet J Rare Dis. 2013;8(1):137.

    PubMed  PubMed Central  Google Scholar 

  60. Matzumura M, Arias-Stella J, Novak JE, Novak JE. Erdheim-Chester disease: a rare presentation of a rare disease. J Investig Med High Impact Case Rep. 2016;4(3):–2324709616663233.

  61. Drier A, Haroche J, Savatovsky J, Godenèche G, Dormont D, Chiras J, et al. Cerebral, facial, and orbital involvement in Erdheim-Chester disease: CT and MR imaging findings. Radiology. 2010;255(2):586–94.

    PubMed  Google Scholar 

  62. Antunes C, Graça B, Donato P. Thoracic, abdominal and musculoskeletal involvement in Erdheim-Chester disease: CT, MR and PET imaging findings. Insights Imaging. 2014;5(4):473–82.

    PubMed  PubMed Central  Google Scholar 

  63. Bourke SC, Nicholson AG, Gibson GJ. Erdheim-Chester disease: pulmonary infiltration responding to cyclophosphamide and prednisolone. Thorax. 2003;58(11):1004–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arnaud L, Malek Z, Archambaud F, Kas A, Toledano D, Drier A, et al. 18F-fluorodeoxyglucose-positron emission tomography scanning is more useful in followup than in the initial assessment of patients with Erdheim-Chester disease. Arthritis Rheum. 2009;60(10):3128–38.

    PubMed  Google Scholar 

  65. Lodhi U, Sarmast U, Khan S, Yaddanapudi K. Multisystem radiologic manifestations of Erdheim-Chester disease. Case Rep Radiol. 2016;2016:2670495.

    PubMed  PubMed Central  Google Scholar 

  66. Haroche J, Amoura Z, Dion E, Wechsler B, Costedoat-Chalumeau N, Cacoub P, et al. Cardiovascular involvement, an overlooked feature of Erdheim-Chester disease: report of 6 new cases and a literature review. Medicine (Baltimore). 2004;83(6):371–92.

    Google Scholar 

  67. Sedrak A, Kondamudi NP. Sickle cell disease. Treasure Island (FL): StatPearls; 2020.

    Google Scholar 

  68. Kosaraju V, Harwani A, Partovi S, Bhojwani N, Garg V, Ayyappan S, et al. Imaging of musculoskeletal manifestations in sickle cell disease patients. Br J Radiol. 2017;90(1073):20160130.

    PubMed  PubMed Central  Google Scholar 

  69. Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics. 2001;21(4):971–94.

    CAS  PubMed  Google Scholar 

  70. Ejindu VC, Hine AL, Mashayekhi M, Shorvon PJ, Misra RR. Musculoskeletal manifestations of sickle cell disease. Radiographics. 2007;27(4):1005–21.

    PubMed  Google Scholar 

  71. Leong CS, Stark P. Thoracic manifestations of sickle cell disease. J Thorac Imaging. 1998;13(2):128–34.

    CAS  PubMed  Google Scholar 

  72. Keeley K, Buchanan GR. Acute infarction of long bones in children with sickle cell anemia. J Pediatr. 1982;101(2):170–5.

    CAS  PubMed  Google Scholar 

  73. Styles LA, Vichinsky EP. Core decompression in avascular necrosis of the hip in sickle-cell disease. Am J Hematol. 1996;52(2):103–7.

    CAS  PubMed  Google Scholar 

  74. Bahebeck J, Atangana R, Techa A, Monny-Lobe M, Sosso M, Hoffmeyer P. Relative rates and features of musculoskeletal complications in adult sicklers. Acta Orthop Belg. 2004;70(2):107–11.

    PubMed  Google Scholar 

  75. Mughal TI, Vaddi K, Sarlis NJ, Verstovsek S. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J Gen Med. 2014;7:89–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cloran F, Banks KP. AJR teaching file: diffuse osteosclerosis with hepatosplenomegaly. AJR Am J Roentgenol. 2007;188(3_supplement):S18–20.

    PubMed  Google Scholar 

  77. Guermazi A, De Kerviler E, Cazals-Hatem D, Zagdanski AM, Frija J. Imaging findings in patients with myelofibrosis. Eur Radiol. 1999;9(7):1366–75.

    CAS  PubMed  Google Scholar 

  78. Lafforgue P, Trijau S. Bone infarcts: unsuspected gray areas? Joint Bone Spine. 2016;83(5):495–9.

    PubMed  Google Scholar 

  79. Munk PL, Helms CA, Holt RG. Immature bone infarcts: findings on plain radiographs and MR scans. AJR Am J Roentgenol. 1989;152(3):547–9.

    CAS  PubMed  Google Scholar 

  80. Stacy GS, Lo R, Montag A. Infarct-associated bone sarcomas: multimodality imaging findings. AJR Am J Roentgenol. 2015;205(4):W432–41.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Chhabra.

Ethics declarations

Disclosures

Avneesh Chhabraconsultant ICON Medical and Treace Medical Concepts, Inc., Royalties: Jaypee, Wolters.

Majid Chalian—Medical Advisor, Imagen Technology Ltd.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, V., Chalian, M., Yi, J. et al. Sclerotic bone lesions caused by non-infectious and non-neoplastic diseases: a review of the imaging and clinicopathologic findings. Skeletal Radiol 50, 847–869 (2021). https://doi.org/10.1007/s00256-020-03644-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03644-0

Keywords

Navigation