Skip to main content
Log in

An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

This article reviews and explains the basic physical principles of metal-induced MRI artifacts, describes simple ways to reduce them, and presents specific reduction solutions. Artifacts include signal loss, pile-up artifacts, geometric distortion, and failure of fat suppression. Their nature and origins are reviewed and explained though schematic representations that ease the understanding. Then, optimization of simple acquisition parameters is detailed. Lastly, dedicated sequences and options specifically developed to reduce metal artifacts (VAT, SEMAC, and MAVRIC) are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toms AP, Marshall TJ, Cahir J, et al. MRI of early symptomatic metal-on metal total hip arthroplasty: a retrospective review of radiological findings in 20 hips. Clin Radiol. 2008;63:49–58.

    Article  CAS  PubMed  Google Scholar 

  2. Cyteval C, Bourdon A. Imaging orthopedic implant infections. Diagn Interv Radiol. 2012;93:547–57.

    Article  Google Scholar 

  3. Müller GM, Månsson S, Müller MF, von Schewelov T, Nittka M, Ekberg O, et al. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case–control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skeletal Radiol. 2014;43(8):1101–12.

    Article  PubMed  Google Scholar 

  4. Smith MR, Artz NS, Wiens C, Hernando D, Reeder SB. Characterizing the limits of MRI near metallic prostheses. Magn Reson Med. 2014. doi: 10.1002 /mrm.25540

  5. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815–50.

    Article  CAS  PubMed  Google Scholar 

  6. Lüdeke KM, Röschmann P, Tischler R. Susceptibility artefacts in NMR imaging. Magn Reson Imaging. 1985;3:329–43.

    Article  PubMed  Google Scholar 

  7. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. Am J Roentgenol. 2011;197:547–55.

    Article  Google Scholar 

  8. Duerk JL. Principles of MR image formation and reconstruction. Magn Reson Imaging. 1999;7:629–59.

    CAS  Google Scholar 

  9. Paschal CB, Morris HD. K-space in the clinic. J Magn Reson Imaging. 2004;19:145–59.

    Article  PubMed  Google Scholar 

  10. Hopper TA, Vasilić B, Pope JM, et al. Experimental and computational analyses of the effects of slice distortion from a metallic sphere in an MRI phantom. Magn Reson Imaging. 2006;24:1077–85.

    Article  PubMed  Google Scholar 

  11. Kolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004;20:487–95.

    Article  PubMed  Google Scholar 

  12. McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from picture to proton, 2nd edn. Cambridge University Press, 2007.

  13. Eustace S, Goldberg R, Williamson D, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact. Clin Radiol. 1997;52:589–94.

    Article  CAS  PubMed  Google Scholar 

  14. Toms AP, Smith-Bateman C, Malcolm PN, Cahir J, Graves M. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Clin Radiol. 2010;65:447–52.

    Article  CAS  PubMed  Google Scholar 

  15. Aboelmagd SM, Malcolm PN, Toms AP. Magnetic resonance imaging of metal artifact reduction sequences in the assessment of metal-on-metal hip prostheses. Reports Med Imaging. 2014;7:65–74.

    Google Scholar 

  16. Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT 1. RadioGraphics. 2007;27(3):791–803.

    Article  PubMed  Google Scholar 

  17. Cha JG, Jin W, Lee MH, et al. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging—phantom and clinical studies. Radiology. 2011;259:885–93.

    Article  PubMed  Google Scholar 

  18. Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31(1):4–18.

    Article  PubMed  Google Scholar 

  19. Sutter R, Hodek R, Fucentese SF, Nittka M, Pfirrmann CW. Total knee arthroplasty MRI featuring slice-encoding for metal artifact correction: reduction of artifacts for STIR and proton density–weighted sequences. Am J Roentgenol. 2013;201(6):1315–24.

    Article  Google Scholar 

  20. Arbogast-Ravier S, Gangi A, Choquet P, Brunot B, Constantinesco A. An in vitro study at low field for MR guidance of a biopsy needle. Magn Reson Imaging. 1995;13:321–4.

    Article  CAS  PubMed  Google Scholar 

  21. Farrelly C, Davarpanah A, Brennan SA, Sampson M, Eustace SJ. Imaging of soft tissues adjacent to orthopedic hardware: comparison of 3-T and 1.5-T MRI. Am J Roentgenol. 2010;194:60–4.

    Article  Google Scholar 

  22. Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph. 1990;14:409–13.

    Article  CAS  PubMed  Google Scholar 

  23. Suh JS, Jeong EK, Shin KH, Cho JH, Na JB, Kim DH, et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol. 1998;171(5):1207–13.

    Article  CAS  PubMed  Google Scholar 

  24. Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;18(1):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1988;15:7–11.

    Article  CAS  PubMed  Google Scholar 

  26. Butts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med. 2005;53:418–24.

    Article  PubMed  Google Scholar 

  27. Lazik A, Landgraeber S, Schulte P, Kraff O, Lauenstein TC, Theysohn JM. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings. Skeletal Radiol. 2015;44(7):941–51.

    Article  PubMed  Google Scholar 

  28. Griffin JF, Archambault NS, Mankin JM, Wall CR, Thompson JA, Padua JR, et al. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence. Spine. 2013;38(24):E1548–53.

    Article  PubMed  Google Scholar 

  29. Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009;61:381–90.

    Article  PubMed  Google Scholar 

  30. Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. Am J Roentgenol. 2011;197:W405–11.

    Article  Google Scholar 

  31. Lee YH, Lim D, Kim E, Kim S, Song HT, Suh JS. Usefulness of slice encoding for metal artifact correction (SEMAC) for reducing metallic artifacts in 3-T MRI. Magn Reson Imaging. 2013;31:703–6.

    Article  PubMed  Google Scholar 

  32. Hargreaves BA, Chen W, Lu W, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging. 2010;31:987–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jungmann PM, Ganter C, Schaeffeler CJ, Bauer JS, Baum T, Meier R, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application. PLoS One. 2015. doi:10.1371/journal.pone.0124922.

    PubMed  PubMed Central  Google Scholar 

  34. Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265(1):204–14.

    Article  PubMed  Google Scholar 

  35. Ai T, Padua A, Goerner F, Nittka M, et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5-T magnetic resonance imaging. Invest Radiol. 2012;47:267–76.

    Article  CAS  PubMed  Google Scholar 

  36. Koch KM, Brau AC, Chen W. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med. 2011;65:71–82.

    Article  CAS  PubMed  Google Scholar 

  37. Gutierrez LB, Do BH, Gold GE, Hargreaves BA, Koch KM, Worters PW, et al. MR imaging near metallic implants using MAVRIC SL: initial clinical experience at 3T. Acad Radiol. 2015;22(3):370–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Naraghi AM, White LM. Magnetic resonance imaging of joint replacements. Semin Musculoskel R. 2006;10:98–106.

    Article  Google Scholar 

  39. Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol. 2003;58:1–19.

    Article  CAS  PubMed  Google Scholar 

  40. Petersilge CA, Lewin JS, Duerk JL, Yoo JU, Ghaneyem AJ. Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws. AJR Am J Roentgenol. 1996;166(5):1213–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chang SD, Lee MJ, Munk PL, Janzen DL, MacKay A, Xiang QS. MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skeletal Radiol. 2001;30(4):213–8.

    Article  CAS  PubMed  Google Scholar 

  42. Song KD, Yoon YC, Park J. Reducing metallic artefacts in post-operative spinal imaging: slice encoding for metal artefact correction with dual-source parallel radiofrequency excitation MRI at 3.0 T. Brit J Radiol. 2013;86(1027):20120524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors warmly thank Nadine Mischler and Franck Girard for illustrations and manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bierry.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillenseger, J.P., Molière, S., Choquet, P. et al. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 45, 677–688 (2016). https://doi.org/10.1007/s00256-016-2338-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2338-2

Keywords

Navigation