Skip to main content

Magnetic Resonance Imaging Artifacts

  • Chapter
  • First Online:
Pitfalls in Musculoskeletal Radiology

Abstract

Magnetic resonance imaging (MRI) has become a very important diagnostic tool in imaging a large number of musculoskeletal abnormalities. Technological advances have greatly improved the image quality and diagnostic capabilities, with shorter scanning times. Newer high-field-strength magnets have overcome many previous limitations and even made functional assessment possible. Unfortunately, MRI is still prone to a number of well-recognized artifacts, some of which have gained more importance with newer, high-field-strength machines and increasing use of MRI in postoperative patients. There has been a significant increase in number of joint replacement procedures with resultant increase in the demand for MRI. MRI evaluation can be challenging in these cases, on multiple fronts. Susceptibility artifacts can obscure a large portion of the image, and failure of fat suppression can easily mimic pathology. MRI artifacts can result from poor scanning technique and external factors or even may be related to inherent patient factors. Artifacts can be broadly classified into motion, susceptibility, chemical shift, and protocol error artifacts. Magic angle phenomenon is a unique artifact that is most often seen in the tendons and the ligaments. Hyperintense signal from this artifact can be wrongly interpreted as pathology. A radiologist needs to be aware of these artifacts and the various ways to correct or reduce them, in order to avoid possible misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSF:

Cerebrospinal fluid

CT:

Computed tomography

EPI:

Echo planar imaging

FOV:

Field of view

FSE:

Fast spin-echo

MRI:

Magnetic resonance imaging

RF:

Radiofrequency

SNR:

Signal-to-noise ratio

References

  • Bernstein MA, Huston J, Ward HA (2006) Imaging artifacts at 3.0T. J Magn Reson Imaging 24:735–746

    Article  PubMed  Google Scholar 

  • Buckwalter KA, Lin C, Ford JM (2011) Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 15:309–319

    Article  PubMed  Google Scholar 

  • Butts K, Pauly JM, Gold GE (2005) Reduction of blurring in view angle tilting MRI. Magn Reson Med 53:418–424

    Article  PubMed  Google Scholar 

  • Bydder M, Rahal A, Fullerton GD et al (2007) The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging 25:290–300

    Article  PubMed  Google Scholar 

  • Cha JG, Jin W, Lee MH et al (2011) Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging- phantom and clinical studies. Radiology 259:885–893

    Article  PubMed  Google Scholar 

  • Chappell KE, Robson MD, Stonebridge-Foster A et al (2004) Magic angle effects in MR neurography. Am J Neuroradiol 25:431–440

    PubMed  Google Scholar 

  • Chavhan GB, Babyn PS, Jankharia BG et al (2008) Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 28:1147–1160

    Article  PubMed  Google Scholar 

  • Choi SJ, Koch KM, Hargreaves BA et al (2015) Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. AJR Am J Roentgenol 204:140–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Christina A, Chen BA, Chen W et al (2011) New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 33:1121–1127

    Article  Google Scholar 

  • Deshmane A, Gulani V, Griswold MA et al (2012) Parallel MR imaging. J Magn Reson Imaging 36:55–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-tesla MRI: physical background and reduction strategies. Eur J Radiol 65:29–35

    Article  PubMed  Google Scholar 

  • Dietrich TJ, Ulbrich EJ, Zanetti M et al (2011) PROPELLER technique to improve image quality of MRI of the shoulder. AJR Am J Roentgenol 197:93–100

    Article  Google Scholar 

  • Disler DG, Recht MP, McCauley TR (2000) MR imaging of the articular cartilage. Skeletal Radiol 29:367–377

    Google Scholar 

  • Du J, Pak BC, Znamirowski R et al (2009) Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis. Magn Reson Imaging 27:557–564

    Article  PubMed  Google Scholar 

  • Eggers G, Rieker M, Kress B et al (2005) Artefacts in magnetic resonance imaging caused by dental material. MAGMA 18:103–111

    Article  PubMed  Google Scholar 

  • Hargreaves BA, Worters PW, Pauly KB et al (2011) Metal-induced artifacts in MRI. AJR Am J Roentgenol 197:547–555

    Article  PubMed  Google Scholar 

  • Jiachen Z, Rao PG (2006) MR artifacts, safety, and quality control. Radiographics 26:275–297

    Article  Google Scholar 

  • Kastel T, Heiland S, Baumer P et al (2011) Magic angle effect: a relevant artifact in MR neurography at 3T? Am J Neuroradiol 32:821–827

    Article  CAS  PubMed  Google Scholar 

  • Koch KM, Lorbiecki JE, Hinks RS et al (2009) A multispectral three-dimensional acquisition technique for imaging near implants. Magn Reson Med 61:381–390

    Article  PubMed  Google Scholar 

  • Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803

    Article  PubMed  Google Scholar 

  • Lee YH, Lim D, Kim E et al (2013) Usefulness of slice encoding for metal artefact correction (SEMAC) for reducing metallic artifacts in 3-T MRI. Magn Reson Imaging 31:703–706

    Article  PubMed  Google Scholar 

  • Lee YH, Lim D, Kim E et al (2014) Feasibility of fat-saturated T2-weighted magnetic resonance imaging with slice encoding for metal artefact correction (SEMAC) at 3T. Magn Reson Imaging 32:1001–1005

    Article  PubMed  Google Scholar 

  • Lu W, Pauly KB, Gold GE et al (2009) SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med 62:66–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansson S, Muller GM, Wellman F et al (2015) Phantom-based qualitative and quantitative evaluation of artifacts in MR images of metallic hip prostheses. Phys Med 31:173–178

    Article  PubMed  Google Scholar 

  • Mengiardi B, Pfirrmann CW, Schottle PB et al (2006) Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic patients and cadaveric tendons. Eur Radiol 16:2197–2206

    Article  PubMed  Google Scholar 

  • Morelli JN, Runge VM, Ai F et al (2011) An image-based approach to understanding the physics of MR artifacts. Radiographics 31:849–866

    Article  PubMed  Google Scholar 

  • Naraghi A, White LM (2012) Three-dimensional MRI of the musculoskeletal system. AJR Am J Roentgenol 199:283–293

    Article  Google Scholar 

  • Peh WCG, Chan JHM (1998) The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol 71:31–36

    Article  CAS  PubMed  Google Scholar 

  • Peh WCG, Chan JHM (2001) Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 30:179–191

    Google Scholar 

  • Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644

    Article  PubMed  Google Scholar 

  • Rumpel H, Chong Y, Porter DA et al (2013) Benign versus metastatic compression fractures: combined diffusion-weighted MRI and MR spectroscopy aids differentiation. Eur Radiol 23:541–550

    Article  PubMed  Google Scholar 

  • Rutherford EE, Tarplett LJ, Davies EM (2007) Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics 27:1737–1749

    Article  PubMed  Google Scholar 

  • Shapiro L, Harish M, Hargreaves B et al (2012) Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging 36:775–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikhare SN, Singh DR, Peh WCG (2014) Variants and pitfalls in MR imaging of the spine. Semin Musculoskelet Radiol 18:23–35

    Article  PubMed  Google Scholar 

  • Singh DR, Chin MS, Peh WCG (2014) Artifacts in musculoskeletal MR imaging. Semin Musculoskelet Radiol 18:12–22

    Article  PubMed  Google Scholar 

  • Smith TB, Nayak KS (2010) MRI artifacts and correction strategies. Imaging Med 2:445–457

    Article  Google Scholar 

  • Sutter R, Ulbrich EJ, Jellus V et al (2012) Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 265:204–214

    Article  PubMed  Google Scholar 

  • Tamhane AA, Arfanakis K (2009) Motion correction in periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and turboprop MRI. Magn Reson Med 62:174–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamhane AA, Arfanakis K, Anastasio M et al (2012) Rapid PROPELLER-MRI: a combination of iterative reconstruction and under-sampling. J Magn Reson Imaging 36:1241–1247

    Article  PubMed  Google Scholar 

  • Wang L, Regatte RR (2015) Investigation of regional influence of magic-angle effect on t2 in human articular cartilage with osteoarthritis at 3T. Acad Radiol 22:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y (2000) Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol 35:602–621

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh R. Singh MBBS, DNB, MMed, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, D.R., Rumpel, H., Chin, M.S.M., Peh, W.C.G. (2017). Magnetic Resonance Imaging Artifacts. In: Peh, W. (eds) Pitfalls in Musculoskeletal Radiology. Springer, Cham. https://doi.org/10.1007/978-3-319-53496-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53496-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53494-7

  • Online ISBN: 978-3-319-53496-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics