Skip to main content
Log in

Normative values for volume and fat content of the hip abductor muscles and their dependence on side, age and gender in a healthy population

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine normative values for volume and fat content of the gluteus medius (GMed) and minimus (GMin) muscle in healthy volunteers and to evaluate their dependence on age, gender and leg dominance.

Materials and methods

The IRB approval was obtained for this study. 80 healthy volunteers (females, 40; males, 40; age range 20–62 years), divided into four age groups, were included. Fat- and water-signal-separated MR images of the pelvis were acquired on a 3.0 T MR with a 3-point mDIXON sequence. Normalized volume and fat-signal fraction (FSF) of the GMed (ViGMed, FSFGMed) and GMin (ViGMin, FSFGMin) muscles were determined.

Results

The overall mean volumes (normalized) and FSF ± SD: ViGMed 105.13 ± 16.30 cm3; ViGMin 30.24 ± 5.15 cm3; FSFGMed 8.13 ± 1.70 % and FSFGMin 9.89 ± 2.72 %. Comparing different age subgroups within each gender no significant differences were found concerning the volumes and FSFs (except FSFGMin in male subgroup aged 20–29 versus 50–62 years, P = 0.014). Comparing FSFs differences between the two genders, only in 20–29 years subgroup, FSFGMed (P =0.003) and FSFGMin (P =0.002) were greater in female. Volume differences between the two legs were not significant (P > 0.077); FSFGMed and FSFGMin (P =0.005 for both) were significantly lower in the dominant leg in female but not in male group (P = 0.454 for FSFGMed and P = 0.643 for FSFMin).

Conclusion

No age dependency was evident for volume normative data for GMed and GMin and normative data for FSF values showed no age- or gender dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cvitanic O, Henzie G, Skezas N, Lyons J, Minter J. MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol. 2004;182(1):137–43.

    Article  PubMed  Google Scholar 

  2. Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J. The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther. 2009;14(6):605–10.

    Article  PubMed  Google Scholar 

  3. Ten Dam L, van der Kooi AJ, Rovekamp F, Linssen WH, de Visser M. Comparing clinical data and muscle imaging of DYSF and ANO5 related muscular dystrophies. Neuromuscul Disord. 2014;24(12):1097–102.

    Article  PubMed  Google Scholar 

  4. Woodley SJ, Nicholson HD, Livingstone V, Doyle TC, Meikle GR, Macintosh JE, et al. Lateral hip pain: findings from magnetic resonance imaging and clinical examination. J Orthop Sports Phys Ther. 2008;38(6):313–28.

    Article  PubMed  Google Scholar 

  5. Pfirrmann CW, Notzli HP, Dora C, Hodler J, Zanetti M. Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology. 2005;235(3):969–76.

    Article  PubMed  Google Scholar 

  6. Ikezoe T, Mori N, Nakamura M, Ichihashi N. Atrophy of the lower limbs in elderly women: is it related to walking ability? Eur J Appl Physiol. 2011;111(6):989–95.

    Article  PubMed  Google Scholar 

  7. Kiyoshige Y, Watanabe E. Fatty degeneration of gluteus minimus muscle as a predictor of falls. Arch Gerontol Geriatr. 2015;60(1):59–61.

    Article  PubMed  Google Scholar 

  8. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14(5):362–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol Ser A Biol Med Sci. 2005;60(3):324–33.

    Article  Google Scholar 

  10. Zhao Y, Chen SY, Lee YC, Wu N. Clinical and economic characteristics of hip fracture patients with and without muscle atrophy/weakness in the United States. Arch Osteoporos. 2013;8(1–2):127.

    Article  PubMed  Google Scholar 

  11. Engelken F, Wassilew GI, Kohlitz T, Brockhaus S, Hamm B, Perka C, et al. Assessment of fatty degeneration of the gluteal muscles in patients with THA using MRI: reliability and accuracy of the Goutallier and quartile classification systems. J Arthroplast. 2014;29(1):149–53.

    Article  Google Scholar 

  12. Kong A, Van der Vliet A, Zadow S. MRI and US of gluteal tendinopathy in greater trochanteric pain syndrome. Eur Radiol. 2007;17(7):1772–83.

    Article  PubMed  Google Scholar 

  13. Makridis KG, Lequesne M, Bard H, Djian P. Clinical and MRI results in 67 patients operated for gluteus medius and minimus tendon tears with a median follow-up of 4.6 years. Orthop Traumatol, Surg Res. 2014;100(8):849–53.

    Article  CAS  Google Scholar 

  14. Muller M, Tohtz S, Winkler T, Dewey M, Springer I, Perka C. MRI findings of gluteus minimus muscle damage in primary total hip arthroplasty and the influence on clinical outcome. Arch Orthop Trauma Surg. 2010;130(7):927–35.

    Article  PubMed  Google Scholar 

  15. Hoffman M, Schrader J, Applegate T, Koceja D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J Athl Train. 1998;33(4):319–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Cassidy FH, Yokoo T, Aganovic L, Hanna RF, Bydder M, Middleton MS, et al. Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics. 2009;29(1):231–60.

    Article  PubMed  Google Scholar 

  17. Nakagawa Y, Hattori M, Harada K, Shirase R, Bando M, Okano G. Age-related changes in intramyocellular lipid in humans by in vivo H-MR spectroscopy. Gerontology. 2007;53(4):218–23.

    Article  CAS  PubMed  Google Scholar 

  18. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.

    PubMed  Google Scholar 

  19. Lequesne M, Djian P, Vuillemin V, Mathieu P. Prospective study of refractory greater trochanter pain syndrome: MRI findings of gluteal tendon tears seen at surgery—clinical and MRI results of tendon repair. Joint Bone Spine. 2008;75(4):458–64.

    Article  PubMed  Google Scholar 

  20. Theodorou DJ, Theodorou SJ, Kakitsubata Y. Skeletal muscle disease: patterns of MRI appearances. Br J Radiol. 2012;85(1020):e1298–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Arokoski MH, Arokoski JP, Haara M, Kankaanpaa M, Vesterinen M, Niemitukia LH, et al. Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol. 2002;29(10):2185–95.

    PubMed  Google Scholar 

  22. Inacio M, Ryan AS, Bair WN, Prettyman M, Beamer BA, Rogers MW. Gluteal muscle composition differentiates fallers from non-fallers in community dwelling older adults. BMC Geriatr. 2014;14:37.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Marcon M, Ciritsis B, Laux C, Nanz D, Nguyen-Kim TD, Fischer MA, et al. Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions. Eur Radiol. 2015;25(2):290–8.

    Article  PubMed  Google Scholar 

  24. Springer I, Muller M, Hamm B, Dewey M. Intra- and interobserver variability of magnetic resonance imaging for quantitative assessment of abductor and external rotator muscle changes after total hip arthroplasty. Eur J Radiol. 2012;81(5):928–33.

    Article  CAS  PubMed  Google Scholar 

  25. Alizai H, Nardo L, Karampinos DC, Joseph GB, Yap SP, Baum T, et al. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women. Eur Radiol. 2012;22(7):1592–600.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fischer MA, Nanz D, Shimakawa A, Schirmer T, Guggenberger R, Chhabra A, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology. 2013;266(2):555–63.

    Article  PubMed  Google Scholar 

  27. Fischer MA, Pfirrmann CW, Espinosa N, Raptis DA, Buck FM. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol. 2014;24(6):1366–75.

    Article  PubMed  Google Scholar 

  28. Karampinos DC, Baum T, Nardo L, Alizai H, Yu H, Carballido-Gamio J, et al. Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J Magn Reson Imaging. 2012;35(4):899–907.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28(3):543–58.

    Article  PubMed  Google Scholar 

  30. Mengiardi B, Schmid MR, Boos N, Pfirrmann CW, Brunner F, Elfering A, et al. Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology. 2006;240(3):786–92.

    Article  PubMed  Google Scholar 

  31. Fischmann A, Hafner P, Fasler S, Gloor M, Bieri O, Studler U, et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol. 2012;259(8):1648–54.

    Article  CAS  PubMed  Google Scholar 

  32. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol (1985). 2001;90(6):2157–65.

    CAS  Google Scholar 

  33. Machann J, Thamer C, Schnoedt B, Stefan N, Stumvoll M, Haring HU, et al. Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. MAGMA. 2005;18(3):128–37.

    Article  CAS  PubMed  Google Scholar 

  34. Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143(3):228–39.

    Article  CAS  PubMed  Google Scholar 

  35. Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging. 2009;29(6):1332–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Reeder SB, McKenzie CA, Pineda AR, Yu H, Shimakawa A, Brau AC, et al. Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging. 2007;25(3):644–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our physicist Dr. Roger Luechinger, PhD, for his technical support, Dr. Thi Dan Linh Nguyen-Kim for her indications concerning the analysis software, and our radiographers Nicole Aebi, Suzanne Potter and Simone Süess for performing the MR exams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Marcon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

This project is supported by the University Zürich Research Program “Research Time for clinical research at the Medical Faculty of University Zurich” (Grant number: RT-13-014).

Additional information

Origin of work

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland

Glossary

BMI

Body mass index

BIA

Bioelectrical impedance analysis

BIA1

Body fat percentage (%) measured by a BIA via the electrical body resistance with foot sensor pads on a similar device of bathroom scale (TANITA UM-018, Tanita Corp, Arlington Heights, Ill)

BIA2

Body fat percentage (%) measured by a BIA via the electrical body resistance with hand sensor pads on a handheld device (OMRON BF300, Omron Healthcare Ltd, Kyoto, Japan)

FSF

Fat signal fraction

FSFGMed

Fat signal fraction of the gluteus medius in %

FSFGMin

Fat signal fraction of the gluteus minimus in %

GMed

Gluteus medius

GMin

Gluteus minimus

MRI

Magnetic resonance imaging

ROI

Region of interest

VGMed

Volume of gluteus medius in liter

VGMin

Volume of gluteus minimus in liter

ViGMed

Normalized volume of gluteus medius calculated from VGMed/body height2 (10−3 L/m2)

ViGMin

Normalized volume of Gluteus minimus calculated from VGMin/body height2 (10−3 L/m2)

WHR

Waist to hip ratio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcon, M., Berger, N., Manoliu, A. et al. Normative values for volume and fat content of the hip abductor muscles and their dependence on side, age and gender in a healthy population. Skeletal Radiol 45, 465–474 (2016). https://doi.org/10.1007/s00256-015-2325-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2325-z

Keywords

Navigation