Skip to main content
Log in

Diversity and salinity adaptations of ammonia oxidizing archaea in three estuaries of China

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ammonia-oxidizing archaea (AOA) are ubiquitously found in diverse habitats and play pivotal roles in the nitrogen and carbon cycle, especially in estuarine and coastal environments. Despite the fact that the diversity and distribution of AOA are thought to be tightly linked to habitats, little is known about the relationship that underpins their genomic traits, adaptive potentials, and ecological niches. Here, we have characterized and compared the AOA community in three estuaries of China using metagenomics. AOA were the dominant ammonia oxidizers in the three estuaries. Through phylogenetic analyses, five major AOA groups were identified, including the Nitrosomarinus-like, Nitrosopumilus-like, Aestuariumsis-like, Nitrosarchaeum-like, and Nitrosopelagicus-like groups. Statistical analyses showed that the aquatic and sedimentary AOA communities were mainly influenced by spatial factors (latitude and water depth) and environmental factors (salinity, pH, and dissolved oxygen) in estuaries, respectively. Compared to AOA dwelling in terrestrial and marine habitats, estuarine AOA encoded more genes involved in glucose and amino acid metabolism, transport systems, osmotic control, and cell motility. The low proteome isoelectric points (pI), high content of acidic amino acids, and the presence of potassium ion and mechanosensitive channels suggest a “salt-in” strategy for estuarine AOA to counteract high osmolarity in their surroundings. Our findings have indicated potential adaptation strategies and highlighted their importance in the estuarine nitrogen and carbon cycles.

Key points

Spatial and environmental factors influence water and sediment AOA respectively.

Estuarine AOA share low proteome isoelectric value and high acid amino acids content.

AOA adaptation to estuaries is likely resulted from their unique genomic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw reads for samples and reconstructed AOA MAGs from the CRE, the JRE, and the PRE are available in the National Omics Data Encyclopedia (NODE) database (http://www.biosino.org/node) under the Bioproject accession numbers OEP001524, OEP000961, and OEP004282, respectively.

References

  • Abby SS, Kerou M, Schleper C (2020) Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. Mbio 11(5):e02371-e2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C (2018) Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun 9(1):1–17

    Article  CAS  Google Scholar 

  • Armenteros JA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423

    Article  Google Scholar 

  • Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27(12):1691–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhard AE, Landry ZC, Blevins A, de la Torre JR, Giblin AE, Stahl DA (2010) Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl Environ Microbiol 76(4):1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Biller SJ, Mosier AC, Wells GF, Francis CA (2012) Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol 3:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6(2):e16626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollmann A, Laanbroek HJ (2002) Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquat Microb Ecol 28(3):239–247

    Article  Google Scholar 

  • Cébron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microbiol 69(12):7091–7100

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabello-Yeves PJ, Rodriguez-Valera F (2019) Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 7(1):1–12

    Article  Google Scholar 

  • Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R, Rodriguez-Valera F (2020) Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 65(7):1471–1488

    Article  CAS  Google Scholar 

  • Cao H, Auguet J-C, Gu J-D (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS ONE 8(2):e52853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung S, Mak W, Xia X, Lu Y, Cheung Y, Liu H (2019) Overlooked genetic diversity of ammonia oxidizing archaea lineages in the global oceans. J Geophys Res-Biogeo 124(7):1799–1811

    Article  Google Scholar 

  • Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao S-J (2008) Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary China. Biogeosciences 5(5):1227–1244

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature 528(7583):504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154(7):2084–2095

    Article  CAS  PubMed  Google Scholar 

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102(41):14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T, Paccanaro A, Jensen LJ, Snyder M (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci 106(5):1374–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(3):353–375

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Xie X, Wan X, Kao S-J, Jiao N, Zhang Y (2018) Niche differentiation of ammonia and nitrite oxidizers along a salinity gradient from the Pearl River estuary to the South China Sea. Biogeosciences 15(16):5169–5187

    Article  CAS  Google Scholar 

  • Hu H-W, Zhang L-M, Yuan C-L, Zheng Y, Wang J-T, Chen D, He J-Z (2015) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol 6:938

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):1–11

    Article  Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1):1–8

    Article  Google Scholar 

  • Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35(suppl_2):W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  • Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546

    Article  PubMed  Google Scholar 

  • KamandaNgugi D, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9(2):396–411

    Article  CAS  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    Article  CAS  PubMed  Google Scholar 

  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C (2021) Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J 15(9):2792–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, Könneke M, Littmann S, Mooshammer M, Niggemann J (2019) Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol 4(2):234–243

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Ann Rev Microbiol 55(1):485–529

    Article  CAS  Google Scholar 

  • Lairson L, Henrissat B, Davies G, Withers S (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster S, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(W1):W293–W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Cao H, Hong Y, Gu J-D (2011) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89(4):1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wei G, Shi W, Sun Z, Li H, Wang X, Gao Z (2018) Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Sci Rep 8(1):1–10

    Google Scholar 

  • Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM, Wallsgrove NJ, Popp BN, Hollibaugh JT (2018a) Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight. ISME J 12(6):1473–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Pan J, Liu Y, Li M, Gu J-D (2018b) Diversity and distribution of Archaea in global estuarine ecosystems. Sci Total Environ 637:349–358

    Article  PubMed  Google Scholar 

  • Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Moran MA, Hollibaugh JT (2014) Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J 8(3):732–736

    Article  CAS  PubMed  Google Scholar 

  • Martens-Habbena W, Berube P, Urakawa H, de La Torre J, Stahl D (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and and bacteria. Nature 461(7266):976–979

    Article  CAS  PubMed  Google Scholar 

  • McLusky DS, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. Oxford University Press, Oxford

    Book  Google Scholar 

  • Merbt SN, Stahl DA, Casamayor EO, Martí E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett 327(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Milliman JD, Huang-Ting S, Zuo-Sheng Y, Mead RH (1985) Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont Shelf Res 4(1–2):37–45

    Article  Google Scholar 

  • Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10(11):3002–3016

    Article  CAS  PubMed  Google Scholar 

  • Mosier AC, Lund MB, Francis CA (2012) Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64(4):955–963

    Article  CAS  PubMed  Google Scholar 

  • Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9(2):396–411

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9(4):1–19

    Article  Google Scholar 

  • Peng Y, Leung HC, Yiu S-M, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14(3):300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, Liu H, Huang X, Zhang X, Nakagawa T (2020) Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J 14(10):2595–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R (2019) Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J 13(9):2150–2161

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Brito B, Rohwer F, Edwards RA (2006) An application of statistics to comparative metagenomics. BMC Bioinformatics 7(1):1–11

    Article  Google Scholar 

  • Santos JP, Mendes D, Monteiro M, Ribeiro H, Baptista MS, Borges MT, Magalhães C (2018) Salinity impact on ammonia oxidizers activity and amoA expression in estuarine sediments. Estuar Coast Shelf Sci 211:177–187

    Article  CAS  Google Scholar 

  • Scarlett K, Denman S, Clark DR, Forster J, Vanguelova E, Brown N, Whitby C (2021) Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J 15(3):623–635

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Nicol GW (2010) Ammonia-oxidising archaea–physiology, ecology and evolution. Adv Microb Physiol 57:1–41

    Article  CAS  PubMed  Google Scholar 

  • Sieber CM, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF (2018) Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 3(7):836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15(5):1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppa J (2006) From genomes to function: haloarchaea as model organisms. Microbiology 152(3):585–590

    Article  CAS  PubMed  Google Scholar 

  • Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101

    Article  CAS  PubMed  Google Scholar 

  • Stieglmeier M, Alves RJE, Schleper C (2014) The phylum thaumarchaeota. In: The prokaryotes: other major lineages of bacteria and the archaea. Springer, Berlin

  • Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci 105(11):4209–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Zhao J, Zhou X, Bei Q, Xia W, Zhao B, Zhang J, Jia Z (2022) Salt tolerance-based niche differentiation of soil ammonia oxidizers. ISME J 16(2):412–422

    Article  CAS  PubMed  Google Scholar 

  • Van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528(7583):555–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Melderen L (2010) Toxin–antitoxin systems: why so many, what for? Curr Opin Microbiol 13(6):781–785

    Article  PubMed  Google Scholar 

  • Wang B, Qin W, Ren Y, Zhou X, Jung M-Y, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L (2019) Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J 13(12):3067–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Yu Z, Wu Z, Song S, Song X, Yuan Y, Cao X (2018) Rates of nitrification and nitrate assimilation in the Changjiang River estuary and adjacent waters based on the nitrogen isotope dilution method. Cont Shelf Res 163:35–43

    Article  Google Scholar 

  • Wankel SD, Mosier AC, Hansel CM, Paytan A, Francis CA (2011) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary California. Appl Environ Microbiol 77(1):269–280

    Article  CAS  PubMed  Google Scholar 

  • Widderich N, Czech L, Elling FJ, Könneke M, Stöveken N, Pittelkow M, Riclea R, Dickschat JS, Heider J, Bremer E (2016) Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol 18(4):1227–1248

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M (2018) Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol 20(2):734–754

    Article  CAS  PubMed  Google Scholar 

  • Xie Y-G, Luo Z-H, Fang B-Z, Jiao J-Y, Xie Q-J, Cao X-R, Qu Y-N, Qi Y-L, Rao Y-Z, Li Y-X (2022) Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota Microbiome 10(1):1–13

    Google Scholar 

  • Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, Tao J, Phelps TJ, Cao Z (2021) The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol Biol Evol 38(9):3637–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(W1):W445–W451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen N, Krom MD, Lin J, Cheng P, Yu F, Guo W, Hong H, Gao X (2019) Understanding how estuarine hydrology controls ammonium and other inorganic nitrogen concentrations and fluxes through the subtropical Jiulong River Estuary, SE China under baseflow and flood-affected conditions. Biogeochemistry 142(3):443–466

    Article  CAS  Google Scholar 

  • Zhang Y, Chen L, Dai T, Tian J, Wen D (2015) The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: a microcosm study. Appl Microbiol Biotechnol 99:9825–9833

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang G-X, Xu Y-B, Gu J-D (2018) Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Appl Microbiol Biotechnol 102(18):8035–8048

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Li H, Du P, Wang B, Lin H, Liu H, Chen J, Li M (2022) Distinct features of sedimentary archaeal communities in hypoxia and non-hypoxia regions off the Changjiang River Estuary. Microbiol Spectr 10(5):e01947-e2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou D, Li Y, Kao SJ, Liu H, Li M (2019) Genomic adaptation to eutrophication of ammonia-oxidizing archaea in the Pearl River estuary. Environ Microbiol 21(7):2320–2332

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Wan R, Han L, Xu MN, Liu Y, Liu H, Kao S-J, Li M (2020) Genomic characteristics of a novel species of ammonia-oxidizing Archaea from the Jiulong River Estuary. Appl Environ Microbiol 86(18):e00736-e820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 32225003, 31970105, 992251306, 42141003); the Shenzhen Science and Technology Program (grant number JCYJ20200109105010363); the Innovation Team Project of Universities in Guangdong Province (grant number 2020KCXTD023); Shenzhen University 2035 Program for Excellent Research (2022B002); the China Postdoctoral Science Foundation (grant number. 2022M722175); Long Term Observation and Research Plan in the Changjiang Estuary and the Adjacent East China Sea Project (LORCE) (grant number 14282); and the National Program on Global Change and Air-Sea Interaction (Phase II)—Hypoxia and Acidification Monitoring and Warning Project in the Changjiang Estuary. CZ also acknowledges supports from the Department of Science and Technology of Guangdong Province (grant number 2021B151512008), the Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology (grant number ZDSYS201802081843490), and the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (grant number K19313901). HL acknowledges the support by the Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (grant number SMSEGL20SC01).

Author information

Authors and Affiliations

Authors

Contributions

DZ and ML conceptualized the study. JC, CZ, SK, and HL provided the samples. DZ performed laboratory work, collected the data, performed the analyses and wrote the manuscript with the help from all co-authors.

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Chen, J., Zhang, C. et al. Diversity and salinity adaptations of ammonia oxidizing archaea in three estuaries of China. Appl Microbiol Biotechnol 107, 6897–6909 (2023). https://doi.org/10.1007/s00253-023-12761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12761-4

Keywords

Navigation