Skip to main content

Advertisement

Log in

Woodfordia fruticosa (L.) Kurz: in vitro biotechnological interventions and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Woodfordia fruticosa (L.) Kurz is a woody medicinal shrub (Lythraceae) commonly known as the “fire flame bush.” W. fruticosa plant parts either alone or whole plant have a long history of recommended use in the Indian medicine systems of Ayurveda, Unani, and Siddha (AUS). This plant is prominently known for its pharmacological properties, viz., antimicrobial, anti-inflammatory, anti-peptic ulcer, hepatoprotective, immunomodulatory, antitumor, cardioprotective, analgesic, and wound healing activities. Its important phyto-constituents, woodfordin C, woodfordin I, oenothein B, and isoschimacoalin-A, exhibit in vitro or in vivo physiological activities beneficial to human health. As the plant is a rich storehouse of phyto-constituents, it is indiscriminately used in its wild habitats. Moreover, due to very poor seed viability and difficult-to-root qualities, it is placed under IUCN list of endangered plant species. For W. fruticosa, biomass production or to its conservation by in vitro regeneration is the best feasible alternative. Till date, only few important in vitro regeneration methods are reported in W. fruticosa. ISSR molecular markers based clonal fidelity and Agrobacterium-mediated transformation has been demonstrated, indicating that W. fruticosa is amenable to genetic manipulation and genome editing studies. This review presents concise summary of updated reports on W. fruticosa phyto-constituents and their biological activities, while a critical appraisal of biotechnological interventions, shortcomings, and factors influencing such potential areas success was presented. The unexplored gaps addressed here are relevant for W. fruticosa scientific innovations yet to come. In this paper, for the first time, we have presented a simple and reproducible protocol for synthetic seed production in W. fruticosa.

Key points

Critical and updated records on W. fruticosa phytochemistry and its activities

In vitro propagation and elicitation of secondary metabolites in W. fruticosa

Key bottlenecks, in vitro flowering, value addition, and outlook in W. fruticosa

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and also available from the corresponding author upon reasonable request.

References

  • Acharjee S, Kumar R, Kumar N (2022) Role of plant biotechnology in enhancement of alkaloid production from cell culture system of Catharanthus roseus: a medicinal plant with potent anti-tumor properties. Ind Crops Prod 176:114298

    CAS  Google Scholar 

  • Açıkgöz MA (2020) Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crops Prod 148:112278

    Google Scholar 

  • Adams TK, Masondo NA, Malatsi P, Makunga NP (2021) Cannabis sativa: from therapeutic uses to micropropagation and beyond. Plants 10(10):2078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aileni M (2022) Environment sustainability and role of biotechnology biotechnology. In: Arora S, Kumar A, Ogita S, Yau YY (eds) Innovations in environmental biotechnology. Springer, Singapore, pp 21–64. https://doi.org/10.1007/978-981-16-4445-0_2

    Chapter  Google Scholar 

  • Alok A, Jain P, Kumar J, Yajnik K, Bhalothia P (2020) Genome engineering in medicinally important plants using CRISPR/Cas9 tool. In: Vijai S, Pawan K D (eds) Genome engineering via CRISPR-Cas9 system. Elsevier, pp 155–161. https://doi.org/10.1016/B978-0-12-818140-9.00014-3

  • Alrabie A, Alrabie NA, AlSaeedy M, Al-Adhreai A, Al-Qadsy I, Al-Horaibi SA, Alaizeri ZM, Alhadlaq HA, Ahamed M, Farooqui M (2022) An integrative GC–MS and LC–MS metabolomics platform determination of the metabolite profile of Bombax ceiba L. root, and in silico & in vitro evaluation of its antibacterial & antidiabetic activities. Nat Prod Res 37:2263–2268. https://doi.org/10.1080/14786419.2022.2149519

  • Arora K, Rai MK, Sharma A (2022) Tissue culture mediated biotechnological interventions in medicinal trees: recent progress. Plant Cell Tissue Organ Cult 150(2):267–287

    Google Scholar 

  • Atal C, Bhatia A, Singh R (1982) Role of Woodfordia fruticosa Kurz (Dhataki) in the preparation of Asavas and Arishtas. J Res Ayurved Sidd 3:193–199

    Google Scholar 

  • Baker DD, Alvi KA (2004) Small-molecule natural products: new structures, new activities. Curr Opin Biotechnol 15(6):576–583

    CAS  PubMed  Google Scholar 

  • Baravalia Y, Chanda S (2011) Protective effect of Woodfordia fruticosa flowers against acetaminophen-induced hepatic toxicity in rats. Pharm Biol 49(8):826–832

    PubMed  Google Scholar 

  • Baravalia Y, Vaghasiya Y, Chanda S (2012) Brine shrimp cytotoxicity, anti-inflammatory and analgesic properties of Woodfordia fruticosa Kurz flowers. Iran J Pharm Res 11(3):851

    PubMed  PubMed Central  Google Scholar 

  • Bhagat S, Singh V, Singh O (1992) Studies on germination behaviour and longevity of Woodfordia Fruticosa. Kurz Seeds Indian for 118:797–797

    Google Scholar 

  • Bhondave PD, Devarshi PP, Mahadik KR, Harsulkar AM (2014) ‘Ashvagandharishta’ prepared using yeast consortium from Woodfordia fruticosa flowers exhibit hepatoprotective effect on CCl4 induced liver damage in Wistar rats. J Ethnopharmacol 151(1):183–190

    CAS  PubMed  Google Scholar 

  • Bhujbal SS, Providencia CA, Nanda RK, Hadawale SS, Yeola RR (2012) Effect of Woodfordia fruticosa on dexamethasone induced insulin resistance in mice. Rev Bras Farmacogn 22:611–616

    CAS  Google Scholar 

  • Bulle M, Kota S, Rathakatla D, Aileni M, Kokkirala VR, Gadidasu KK, Abbagani S (2012) An efficient in vitro leaf-based regeneration and evaluation of genetic fidelity using ISSR markers in Woodfordia fruticosa (L.) Kurz. J Herbs Spices Med Plants 18(2):178–190

    CAS  Google Scholar 

  • Bulle M, Rathakatla D, Lakkam R, Kokkirala VR, Aileni M, Peng Z, Abbagani S (2015) Agrobacterium tumefaciens–mediated transformation of Woodfordia fruticosa (L.) Kurz. J Genet Eng Biotechnol 13(2):201–207

    PubMed  PubMed Central  Google Scholar 

  • Burkill IH (1966) A Dictionary of the Economic Products of the Malay Peninsula 2(2nd edn). CAB direct, UK

  • Cardoso JC, Sheng Gerald LT, Teixeira da Silva JA (2018) Micropropagation in the twenty-first century. In: Loyola-Vargas V, Ochoa-Alejo N (eds) Plant cell culture protocols. Methods in Molecular Biology, Humana Press, New York, pp 17–46. https://doi.org/10.1007/978-1-4939-8594-4_2

    Chapter  Google Scholar 

  • Chadha Y (1976) The wealth of India: a dictionary of Indian raw materials and industrial products—raw materials, vol. X Publication and information directorate, CSIR, New Delhi 586–687

  • Chalageri G, Dhananjaya S, Raghavendra P, Kumar LS, Babu U, Varma SR (2019) Substituting plant vegetative parts with callus cell extracts: case study with Woodfordia fruticosa Kurz.–A potent ingredient in skin care formulations. S Afr J Bot 123:351–360

    Google Scholar 

  • Chandan B, Saxena A, Shukla S, Sharma N, Gupta D, Singh K, Suri J, Bhadauria M, Qazi G (2008) Hepatoprotective activity of Woodfordia fruticosa Kurz flowers against carbon tetrachloride induced hepatotoxicity. J Ethnopharmacol 119(2):218–224

    CAS  PubMed  Google Scholar 

  • Chaturvedi PA, Ghatak AA, Desai NS (2012) Evaluation of radical scavenging potential and total phenol content in Woodfordia fruticosa from different altitudes. J Plant Biochem Biotechnol 21:17–22

    CAS  Google Scholar 

  • Choi H, Song J, Park K, Baek S (2010) In vitro anti-enterovirus 71 activity of gallic acid from Woodfordia fruticosa flowers. Lett Appl Microbiol 50(4):438–440

    CAS  PubMed  Google Scholar 

  • Das PK, Goswami S, Chinniah A, Panda N, Banerjee S, Sahu NP, Achari B (2007) Woodfordia fruticosa: traditional uses and recent findings. J Ethnopharmacol 110(2):189–199

    CAS  PubMed  Google Scholar 

  • Dias M, Pinto G, Santos C (2011) Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. Photosynthetica 49:259–266

    Google Scholar 

  • Dinesha S, Vineeta GS, Mondal HA, Chakravarty S (2021) Macro-proliferation cup technique for mass multiplication of Woodfordia fruticosa Dhawai (L.) Kurz (Dhawai) in sub-humid foothills of Eastern Himalaya. Indian J Ecol 48(5):1305–1312

    Google Scholar 

  • Dinesha S, Shukla G, Roy B, Debnath MK, Chakravarty S (2022) Effect of seed priming on germination and nursery establishment of Woodfordia fruticosa (L.) Kurz (Dhawai). Indian J Ecol 49(6):2347–2358

    Google Scholar 

  • Dubey D, Patnaik R, Ghosh G, Padhy RN (2014) In vitro antibacterial activity, gas chromatography–mass spectrometry analysis of Woodfordia fruticosa Kurz leaf extract and host toxicity testing with in vitro cultured lymphocytes from human umbilical cord blood. Osong Public Health Res Perspect 5(5):298–312

    PubMed  PubMed Central  Google Scholar 

  • Eibl R, Meier P, Stutz I, Schildberger D, Hühn T, Eibl D (2018) Plant cell culture technology in the cosmetics and food industries: current state and future trends. Appl Microbiol Biotechnol 102:8661–8675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Google Scholar 

  • Gayathri G, Arya K, Bastian D (2009) Rapid multiplication of fire flamed bush (Woodfordia fruticosa (L.) Kurz) through in vitro techniques. Curr Biot 2(4):453–460

    Google Scholar 

  • Gerszberg A, Wiktorek-Smagur A (2022) Hairy root cultures as a multitask platform for green biotechnology. Plant Cell Tissue Organ Cult 150(3):493–509

    Google Scholar 

  • Giri S, Dey G, Sahu R, Paul P, Nandi G, Dua T (2023) Traditional uses, phytochemistry and pharmacological activities of Woodfordia fruticosa (L.) Kurz: a comprehensive review. Indian J Pharm Sci 85(1):1–12

    CAS  Google Scholar 

  • Grover N, Patni V (2011a) Extraction and application of natural dye preparations from the floral parts of Woodfordia fruticosa (Linn.) Kurz. Indian J Nat Prod Resour 2:403–408

  • Grover N, Patni V (2011b) High frequency plantlet regeneration of fire flamed bush [Woodfordia Fruticosa (Linn.) Kurz.] using nodal explant. J Indian Bot Soc 90(3and4):286–291

    Google Scholar 

  • Grover N, Patni V (2013) Phytochemical characterization using various solvent extracts and GC-MS analysis of methanolic extract of Woodfordia fruticosa (L) Kurz. Leaves Int J Pharm Pharm Sci 5(4):291–295

    Google Scholar 

  • Grzegorczyk-Karolak I, Wiktorek-Smagur A, Hnatuszko-Konka K (2018) An untapped resource in the spotlight of medicinal biotechnology: the genus Scutellaria. Curr Pharm Biotechnol 19(5):358–371

    CAS  PubMed  Google Scholar 

  • Guo M, Chen H, Dong S, Zhang Z, Luo H (2022) CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chin Med 17(1):33

    PubMed  PubMed Central  Google Scholar 

  • Ingarsal N, Kasthuri V, Vinothkanna A, Ananth S (2021) Woodfordia fruticosa flower extract mediated silver nanoparticles and its prodigious potential as antioxidant, antibacterial and photocatalyst. Ann Romanian Soc Cell Biol 25:3022–3037

  • Inomata S (1998) Antiaging agents containing Woodfordia extracts. Japanese Patent 10.036, 28

  • Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan P, Zafar N, Frukh A (2018) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult 132:239–265

    CAS  Google Scholar 

  • Islam SN, Banik H, Tarek SAM, Rahman M (2009) In vitro propagation of Holarrhena antidysenterica Wall, Wedelia chinensis (Osb.) Merr. and Woodfordia fruticosa (L.) Kurz. Plant Tissue Cult Biotechnol 19(2):253–255

    Google Scholar 

  • Kadota S, Takamori Y, Nyein KN, Kikuchi T, Tanaka K, Ekimoto H (1990) Constituents of the leaves of Woodfordia fruticosa Kurz. I: isolation, structure, and proton and carbon-13 nuclear magnetic resonance signal assignments of Woodfruticosin (Woodfordin C), an inhibitor of deoxyribonucleic acid topoisomerase II. Chem Pharm Bull 38(10):2687–2697

    CAS  Google Scholar 

  • Kannan N, Manokari M, Shekhawat MS (2020) Enhanced production of anthraquinones and phenolic compounds using chitosan from the adventitious roots of Morinda coreia Buck. and Ham. Ind Crops Prod 148:112321

    CAS  Google Scholar 

  • Katiyar CK, Duggal RK, Rao BVJ (2002) Herbal composition and method of manufacturing such composition for the management of gynecological disorders. US Patent 6,455,077 B2

  • Kaur P, Pandey DK, Gupta R, Kumar V, Dwivedi P, Sanyal R, Dey A (2021) Biotechnological interventions and genetic diversity assessment in Swertia sp.: a myriad source of valuable secondary metabolites. Appl Microbiol Biotechnol 105(11):4427–4451

    CAS  PubMed  Google Scholar 

  • Kaur K, Dolker D, Behera S, Pati PK (2022) Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal. Plant Cell Tissue Organ Cult 149(1–2):41–60

    PubMed  PubMed Central  Google Scholar 

  • Khan IA, Singh A, Mindala DP, Meena S, Vij B, Yadav AK, Roy S, Nandi U, Katare AK, Jaglan S (2019) Preclinical development of gastro-protective botanical candidate from Woodfordia fruticosa (Linn.) Kurz: chemical standardization, efficacy, pharmacokinetics and safety pharmacology. J Ethnopharmacol 241:112023

    CAS  PubMed  Google Scholar 

  • Khushalani H, Tatke P, Singh KK (2006) Antifertility activity of dried flowers of Woodfordia fruticosa kurz. Indian J Pharm Sci 68:528–529

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7(58):36492–36505

    CAS  Google Scholar 

  • Kokkirala VR, Kota S, Yarra R, Bulle M, Aileni M, Gadidasu KK, da Silva JAT, Abbagani S (2012) Micropropagation via nodal explants of Woodfordia fruticosa (L.) Kurz. Med Aromat Plant Sci Biotechnol 6(1):50–53

    Google Scholar 

  • Krishnan P, Seeni S (1994) Rapid micropropagation of Woodfordia fruticosa (L.) Kurz (Lythraceae), a rare medicinal plant. Plant Cell Rep 14:55–58

    CAS  PubMed  Google Scholar 

  • Kroes B, Van den Berg A, Abeysekera A, De Silva K, Labadie R (1993) Fermentation in traditional medicine: the impact of Woodfordia fruticosa flowers on the immunomodulatory activity, and the alcohol and sugar contents of Nimba arishta. J Ethnopharmacol 40(2):117–125

    CAS  PubMed  Google Scholar 

  • Kumar D, Sharma M, Sorout A, Saroha K, Verma S (2016) Woodfordia fruticosa Kurz.: a review on its botany, chemistry and biological activities. J Pharmacogn Phytochem 5(3):293–298

    CAS  Google Scholar 

  • Kuramochi-Motegi A, Kuramochi H, Kobayashi F, Ekimoto H, Takahashi K, Kadota S, Takamori Y, Kikuchi T (1992) Woodfruticosin (woodfordin C), a new inhibitor of DNA topoisomerase II. Experimental Antitumor Activity. Biochem Pharmacol 44(10):1961–1965

    CAS  PubMed  Google Scholar 

  • Lal UR, Tripathi SM, Jachak SM, Bhutani KK, Singh IP (2009) HPLC analysis and standardization of Arjunarishta–an Ayurvedic cardioprotective formulation. Sci Pharm 77(3):605–616

    CAS  Google Scholar 

  • Liu M-J, Wang Z, Li H-X, Wu R-C, Liu Y-Z, Wu Q-Y (2004) Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells. Toxicol Appl Pharmacol 194(2):141–155

    CAS  PubMed  Google Scholar 

  • Lou Q, Liu H, Luo W, Chen K, Liu Y (2021) Creating a novel petal regeneration system for function identification of colour gene of grape hyacinth. Plant Methods 17(1):1–10

    Google Scholar 

  • Lozzi A, Abdelwahd R, Mentag R, Abousalim A (2019) Development of a new culture medium and efficient protocol for in vitro micropropagation of Ceratonia siliqua L. In Vitro Cell Dev Biol 55(5):615–624

    CAS  Google Scholar 

  • Mathew G, Abhimanue T, Joseph A (2018) Standardisation of seedling production in Thaathiri Woodfordia fruticosa (L.) Kurz. Indian J Sci Res 19(1):23–27

    CAS  Google Scholar 

  • Meena V, Satish K (2015) Woodfordia fruticosa (L.) Kurz: a high demand threatened plant with potential medicinal values. Indian J Plant Sci 4(3):100–106

    Google Scholar 

  • Miroshnichenko D, Klementyeva A, Dolgov S (2021) The effect of daminozide, dark/light schedule and copper sulphate in tissue culture of Triticum timopheevii. Plants 10(12):2620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molur S, Ved D K, Tandon V, Namboodiri N, Walker S. (1995). Conservation assessment and management plan (CAMP) for selected species of medicinal plants of southern India. Zoo Outreach Organisatlon/CBSG, Bangalore, pp 23–25

  • Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S (2022) Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 14:e00194

    PubMed  PubMed Central  Google Scholar 

  • Mukkamala SK, Ramanam K, Rambabu P, Kumar PB (2010) Evaluation of anti-ulcer activity of woodfordia fruticosa flowers and leaves. Adv Pharmacol Toxicol 11(3):141

    Google Scholar 

  • Murali P, Rajasekaran S, Krishnarajasekar O, Perumal T, Nalini K, Lakshmisubramanian S, Deivanayagam C (2006) Plant-based formulation for bronchial asthma: a controlled clinical trial to compare its efficacy with oral salbutamol and theophylline. Respiration 73(4):457–463

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Nanba T, Hattori Y, Shimomura K, Takamatsu S (1995) Cosmetic. Jpn Patent 7:126–144

    Google Scholar 

  • Nandy S, Singh J, Pandey DK, Dey A (2020) Hemidesmus indicus L. Br.: critical assessment of in vitro biotechnological advancements and perspectives. Appl Microbiol Biotechnol 104:8517–8548

    CAS  PubMed  Google Scholar 

  • Neha G, Preeti M, Vidya P (2019) High-Frequency direct regeneration of Woodfordia fruticosa (Linn.) Kurz, A valuable ayurvedic herb. Res J Biotechnol 14:11

    Google Scholar 

  • Niazian M (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249:953–973

    CAS  PubMed  Google Scholar 

  • Nitha A, Prabha SP, Ansil PN, Latha MS (2013) Antiproliferative effect of Woodfordia fruticosa Kurz flowers on experimentally induced hepatocellular carcinoma in rats and in human hepatoma cell line. J Pharm Res 6(2):239–248

    Google Scholar 

  • Oudhia P (2003) Interaction with the herb collectors of Gandai Region. Chhatisgarh, MP, India

    Google Scholar 

  • Parekh J, Chanda S (2007) In vitro antibacterial activity of the crude methanol extract of Woodfordia fruticosa Kurz. flower (Lythraceae). Braz J Microbiol 38:204–207

    Google Scholar 

  • Pujari I, Babu VS (2022) Precocious in vitro flowering in threatened ornamental orchid, Dendrobium ovatum–Decoding the causal factors. Curr Plant Biol 31:100257

    CAS  Google Scholar 

  • Raghuvanshi R, Nuthakki VK, Singh L, Singh B, Bharate SS, Bhatti R, Bharate SB (2021) Identification of plant-based multitargeted leads for Alzheimer’s disease: in-vitro and in-vivo validation of Woodfordia fruticosa (L.) Kurz. Phytomedicine 91:153659

    CAS  PubMed  Google Scholar 

  • Raghuwanshi N, Kumari P, Srivastava AK, Vashisth P, Yadav TC, Prasad R, Pruthi V (2017) Synergistic effects of Woodfordia fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo. Mater Sci Eng C 80:252–262

    CAS  Google Scholar 

  • Raju S, Chauhan P, Shah V, Sood R (1994) Propagating Coriaria nepalensis, Debregeasia hypoleuca and Woodfordia floribunda through stem cuttings. Van Vigyan 32(4):102–107

    Google Scholar 

  • Rama S (2013) Conservation and cultivation of threatened and high valued medicinal plants in North East India. Int J Biodivers Conserv 5(9):584–591

    Google Scholar 

  • Ramachandran N, Kotiyal JP (1976) Polyphenols of the flowers and leaves of woodfordia fructicosa. Indian J Pharm 38:110–111

  • Ramezannezhad R, Aghdasi M, Fatemi M (2019) Enhanced production of cichoric acid in cell suspension culture of Echinacea purpurea by silver nanoparticle elicitation. Plant Cell Tissue Organ Cult 139:261–273

    CAS  Google Scholar 

  • Ranganayaki M, Ranganathan T (1966) Indigenous Indian tanning materials. Woodfordia Fruticosa 13:293–297

    CAS  Google Scholar 

  • Rose B, Prasad N (2013) Analgesic activity of extracts of Woodfordia fruticosa stems bark in animal models. Indian J Pharm Biol Res 4(4):175–180

    Google Scholar 

  • Sanyal R, Nandi S, Pandey S, Chatterjee U, Mishra T, Datta S, Prasanth DA, Anand U, Mane AB, Kant N (2022) Biotechnology for propagation and secondary metabolite production in Bacopa monnieri. Appl Microbiol Biotechnol 106(5–6):1837–1854

    CAS  PubMed  Google Scholar 

  • Sareetha A, Sridhar Prasad YP (2021) Repeated oral administration of ethanolic extract of Woodfordia fruticosa (L.) Kurz. flowers against the animal models of depression. Natl J Physiol Pharm Pharmacol 11(5):490–494

    CAS  Google Scholar 

  • Schenk RU, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canad J Bot 50(1):199–204

    CAS  Google Scholar 

  • Shah AS, Juvekar AR (2010) In vitro and in vivo immunostimulatory activity of Woodfordia fruticosa flowers on non-specific immunity. Pharm Biol 48(9):1066–1072

    PubMed  Google Scholar 

  • Shahnawaz, Pandey DK, Konjengbam M, Dwivedi P, Kaur P, Kumar V, Ray D, Ray P, Nazir R, Kaur H (2021) Biotechnological interventions of in vitro propagation and production of valuable secondary metabolites in Stevia rebaudiana. Appl Microbiol Biotechnol 105:8593–8614. https://doi.org/10.1007/s00253-021-11580-9

  • Shome U, Mehrotra S, Sharma H (1981) Pharmacognostic studies on the flower of Woodfordia fruticosa Kurz. Proc Indian Acad Sci 90:335–351

    Google Scholar 

  • Shubha J, Tripathi P, Somashekar B, Kurrey N, Bhatt P (2021) Woodfordia fruticosa extract supplementation stimulates the growth of Lacticaseibacillus casei and Lacticaseibacillus rhamnosus with adapted intracellular and extracellular metabolite pool. J Appl Microbiol 131(6):2994–3007

    CAS  PubMed  Google Scholar 

  • Silvestri C, Rugini E, Cristofori V (2020) The effect of CuSO4 for establishing in vitro culture, and the role nitrogen and iron sources in in vitro multiplication of Corylus avellana L. cv. Tonda Gentile Romana. Plant Biosyst 154(1):17–23

    Google Scholar 

  • Simonović AD, Trifunović-Momčilov MM, Filipović BK, Marković MP, Bogdanović MD, Subotić AR (2020) Somatic embryogenesis in Centaurium erythraea Rafn—current status and perspectives: a review. Plants 10(1):70

    PubMed  PubMed Central  Google Scholar 

  • Siraree A (2022) Artificial Seed Technology. In: Misra V, Srivastava S, Mall AK (eds) Sugar beet cultivation, management and processing. Springer, Singapore, pp 131–142. https://doi.org/10.1007/978-981-19-2730-0_8

    Chapter  Google Scholar 

  • Sowmya M, Jinu U, Sarathikannan D, Geetha N, Girija S, Venkatachalam P (2020) Effect of silver nitrate and growth regulators on direct shoot organogenesis and in vitro flowering from internodal segment explants of Alternanthera sessilis L. Biocatal Agric Biotechnol 30:101855

    Google Scholar 

  • Srivastava AK, Siddharth SA, Hemant N, Rajnish S, Gaurav S (2015) Phytopharmacological evaluation of aerial parts of Woodfordia fruticosa (L.) Kurz in Cough Variant Asthma. Pharmacogn J 7:296–299

  • Subrahmanyeswari T, Laha S, Kamble SN, Singh S, Bhattacharyya S, Gantait S (2023) Alginate Encapsulation of Shoot Tips and Their Regeneration for Enhanced Mass Propagation and Germplasm Exchange of Genetically Stable Stevia rebaudiana Bert. Sugar Tech 25:542–551. https://doi.org/10.1007/s12355-022-01194-4

  • Sudheer W, Thiruvengadam M, Nagella P (2023) A comprehensive review on tissue culture studies and secondary metabolite production in Bacopa monnieri L. Pennell: A nootropic plant. Crit Rev Biotechnol 1–15. https://doi.org/10.1080/07388551.2022.2085544

  • Syed YH, Khan M (2016) Chromatographic profiling of ellagic acid in Woodfordia fruticosa flowers and their gastroprotective potential in ethanol-induced ulcers in rats. Pharmacognosy Res 8:S5

    PubMed  PubMed Central  Google Scholar 

  • Talla SK, Bagari P, Manga S, Aileni M, Mamidala P (2022) Comparative study of micropropagated plants of Grand Naine banana during in vitro regeneration and ex vitro acclimatization. Biocatal Agric Biotechnol 42:102325

    CAS  Google Scholar 

  • Tayab MA, Chowdhury KAA, Jabed M, Mohammed Tareq S, Kamal AM, Islam MN, Uddin AK, Hossain MA, Emran TB, Simal-Gandara J (2021) Antioxidant-rich woodfordia fruticosa leaf extract alleviates depressive-like behaviors and impede hyperglycemia. Plants 10(2):287

    PubMed  PubMed Central  Google Scholar 

  • Tewiri P, Kulkiro MKS (2001) A study of lukol in leucorrhoea, pelvic inflammatory diseases and dysfunctional uterine bleeding. Anc Sci Life 21(2):139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur S, Kaurav H, Chaudhary G (2021) A review on Woodfordia fruticosa Kurz (Dhatki): Ayurvedic, folk and modern uses. J Drug Deliv Ther 11(3):126–131

    Google Scholar 

  • Tiwari M, Srivastava M, Sohal JK (2017) Rapid shoot proliferation of Woodfordia fruiticosa (L) Kurz in liquid shake culture system. Int J Adv Eng Res Sci 6(11):577–588

    Google Scholar 

  • Tsuji T, Seitai U, Shu T, Yoshida T (1996) Polygalacturonase inhibitors isolation from plant. Jpn Patent 8:481–489

    Google Scholar 

  • Uday M, Kishor D, Ajay R (2014) Pharmacognostic and pharmacological overview on Woodfordia fruticosa Kurz. Sch Acad J Pharm 3(5):418–422

    Google Scholar 

  • Ueda K, Shimomura K (1995) Cosmetic. Jpn Patent 7:157–420

    Google Scholar 

  • Verma N, Amresh G, Sahu P, Rao CV, Singh AP (2012) Antihyperglycemic activity of Woodfordia fruticosa (Kurz) flowers extracts in glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. Indian J Exp Biol 50:351–358

    PubMed  Google Scholar 

  • Wawrosch C, Zotchev SB (2021) Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Appl Microbiol Biotechnol 105(18):6649–6668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo HJ, Kwon MJ, Han SY, Jeong JC, Kim CY, Park SU, Park CH (2023) Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. Plants 12(4):797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Chou T, Nitta A, Miyamoto K-i, Koshiura R, Okuda T (1990) Woodfordin C, a macro-ring hydrolyzable tannin dimer with antitumor activity, and accompanying dimers from Woodfordia fruticosa flowers. Chem Pharm Bull 38(5):1211–1217

    CAS  Google Scholar 

  • Yoshida T, Chou T, Matsuda M, Yasuhara T, Yazaki K, Hatano T, Nitta A, Okuda T (1991) Woodfordin D and oenothein A, trimeric hydrolyzable tannins of macro-ring structure with anti-tumor activity. Chem Pharm Bull 39(5):1157–1162

    CAS  Google Scholar 

  • Zhang Y, Zhang Q, Chen Q-J (2020) Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. Sci China Life Sci 63:1491–1498

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RNM, BK, BB, MM, SVSR, SRT, and MA are grateful to the Department of Biotechnology, Telangana University, Nizamabad, India, for providing the facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to conception, design, acquisition of literature, and its interpretation in drafting the article. Writing the draft, its review, and editing were performed by MB, MA, and ENM. RNM, BK, BB, MM, SVSR, and SRT conducted technical experiments and helped in making the tables. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mahender Aileni or Mallesham Bulle.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aileni, M., Bulle, M., Malavath, R.N. et al. Woodfordia fruticosa (L.) Kurz: in vitro biotechnological interventions and perspectives. Appl Microbiol Biotechnol 107, 5855–5871 (2023). https://doi.org/10.1007/s00253-023-12695-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12695-x

Keywords

Navigation