Skip to main content
Log in

Evaluation of a bacterial group 1 LEA protein as an enzyme protectant from stress-induced inactivation

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a “molecular shield,” preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress.

Key points

• This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential.

• AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement.

• The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments.

Graphical Abstract

AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  • Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F (2014) Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am J Bot 5(22):3440. https://doi.org/10.4236/ajps.2014.522360

    Article  CAS  Google Scholar 

  • Artur MAS, Rienstra J, Dennis TJ, Farrant JM, Ligterink W, Hilhorst H (2019) Structural plasticity of intrinsically disordered LEA proteins from Xerophyta schlechteri provides protection in vitro and in vivo. Front Plant Sci 10(10):1272. https://doi.org/10.3389/fpls.2019.01272

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayala M (2010) Redox potential of peroxidases. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12627-7_4

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Phys 148(1):6–24

    Article  CAS  Google Scholar 

  • Boswell LC, Menze MA, Hand SC (2014) Group 3 late embryogenesis abundant proteins from embryos of Artemia franciscana: structural properties and protective abilities during desiccation. Physiol Biochem Zool 87(5):640–651. https://doi.org/10.1086/676936

    Article  PubMed  Google Scholar 

  • Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33(3):418–430

    Article  CAS  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi J, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold- induced dehydrin purified from barley. Physiol Plant 118:262–269

    Article  CAS  Google Scholar 

  • Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA (2013) Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archaea and bacteria domains. Mol Genet Genomics 288:503–517. https://doi.org/10.1007/s00438-013-0768-2

    Article  CAS  PubMed  Google Scholar 

  • Candotto Carniel F, Fernandez-Marín B, Arc E, Craighero T, Laza JM, Incerti G, Tretiach M, Kranner I (2021) How dry is dry? Molecular mobility in relation to thallus water content in a lichen. J Exp Bot 72(5):1576–1588. https://doi.org/10.1093/jxb/eraa521

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1965) The origin of trehalose and its significance during the formation of encysted dormant embryos of artemia salina. Comp Biochem Physiol 14:135–43. https://doi.org/10.1016/0010-406x(65)90014-9

    Article  CAS  PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Cuevas-Velazquez CL, Rendon-Luna DF, Covarrubias AA (2014) Dissecting the cryoprotection mechanisms for dehydrins. Front Plant Sci 5:583

    Article  Google Scholar 

  • Cuming AC (1999) LEA proteins. In: Casey R, Shewry PR (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, pp 753–780. https://doi.org/10.1007/978-94-011-4431-5_32

  • Czernik M, Fidanza A, Luongo FP, Valbonetti L, Scapolo PA, Patrizio P, Loi P (2020) Late embryogenesis abundant (LEA) proteins confer water stress tolerance to mammalian somatic cells. Cryobiology 1(92):189–196. https://doi.org/10.1016/j.cryobiol.2020.01.009

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graphics Model 19:26–59

    Article  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Dure L III (1993) Structural motifs in Lea proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environ- mental stress. The American Society of Plant Physiologists, Rockville, MD, pp 91–103

  • Espelund M, Saebøe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992). Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J Mar 2(2):241–52

  • Furuki T, Sakurai M (2014) Group 3 LEA model peptides protect liposomes during desiccation. Biochem Biophys Acta 1838:2757–2766

    Article  CAS  Google Scholar 

  • Furuki T, Sakurai M (2016) Group 3 LEA protein model peptides protect enzymes against desiccation stress. Biochim Biophys. Acta 1864:1237–1243

    CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  CAS  Google Scholar 

  • Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M (1993) Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238(3):409–418

    Article  CAS  Google Scholar 

  • Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005a) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098. https://doi.org/10.1016/j.febslet.2005.06.036

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005b) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157. https://doi.org/10.1042/BJ20041931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel MH, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167. https://doi.org/10.1104/pp.104.052480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    Article  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42(7–8):657–662. https://doi.org/10.1016/j.plaphy.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka R, Hagiwara-Komoda Y, Furuki T, Kanamori Y, Fujita M, Cornette R, Sakurai M, Okuda T, Kikawada T (2013) An abundant LEA protein in the anhydrobiotic midge, PvLEA4, act as a molecular shield by limiting growth of aggregating protein particles. Insect Biochem Mol Biol 43:1055-1067

  • Hesgrove C, Boothby TC (2020) The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun Signal 18:178. https://doi.org/10.1186/s12964-020-00670-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans. 40:1000–1003 https://doi.org/10.1042/BST20120109.

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberté S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 4:583–593. https://doi.org/10.1046/j.1365-313x.1995.8040583.x

    Article  Google Scholar 

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20(1):42–50. https://doi.org/10.1002/pro.534

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman-Baker E, Patel SN, Graether SP (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol. 163(3):1376–86. https://doi.org/10.1104/pp.113.226803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Phys 116(1):173–181. https://doi.org/10.1104/pp.116.1.173

    Article  CAS  Google Scholar 

  • Jiang S, Wang J, Liu X, Liu Y, Guo C, Zhang L, Han J, Wu X, Xue D, Gomaa AE, Feng S, Zhang H, Chen Y, Ping S, Chen M, Zhang W, Li L, Zhou Z, Zuo K, Lin M (2017) DrwH, a novel WHy domain-containing hydrophobic LEA5C protein from Deinococcus radiodurans, protects enzymatic activity under oxidative stress. Sci Rep 7(1):9281

    Article  Google Scholar 

  • Kazuoka T, Oeda K (1994) Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Phys 35:601–611

    Article  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  Google Scholar 

  • Larsen B, Haug A (1971) Biosynthesis of alginate: Part I. Composition and structure of alginate produced by Azotobacter vinelandii (Lipman). Carbohydr Res 17(2):287–296

  • Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC (2012). Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 18:109(51):20859–20864. https://doi.org/10.1073/pnas.1214893109

  • Liu Y, Zheng YZ (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54(6):944–959

  • Matsuo N, Goda N, Shimizu K, Fukuchi S, Ota M, Hiroaki H (2018) Discovery of cryoprotective activity in human genome-derived intrinsically disordered proteins. Int J Mol Sci 19(2):401. https://doi.org/10.3390/ijms19020401

  • McCubbin WD, Kay CM, Lane BG (1985) Hydrodynamic and optical properties of the wheat germ Em protein. Can J Biochem Cell Biol 63:803–811

    Article  CAS  Google Scholar 

  • Momma M, Kaneko S, Haraguchi K, Matsukura U (2003) Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci Biotechnol Biochem 67:1832–1835. https://doi.org/10.1271/bbb.67.1832

    Article  CAS  PubMed  Google Scholar 

  • Montellano PR (2010) Catalytic mechanisms of heme peroxidases. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases: peroxidases as potential industrial biocatalysts, vol 1. Springer, Berlin, Heidelberg, pp 80–107

    Google Scholar 

  • Pietrosemoli N, García-Martín JA, Solano R, Pazos F (2013) Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation. PLoS One 8(2):e55524. https://doi.org/10.1371/journal.pone.0055524

  • Piszkiewicz S, Gunn KH, Warmuth O, Propst A, Mehta A, Nguyen KH, Kuhlman E, Guseman AJ, Stadmiller SS, Boothby TC, Neher SB, Pielak GJ (2019) Protecting activity of desiccated enzymes. Protein Sci 28(5):941–951. https://doi.org/10.1002/pro.3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova AV, Hundertmark M, Seckler R, Hincha DK (2011) Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Biochim Biophys Acta 1808(7):1879–1887. https://doi.org/10.1016/j.bbamem.2011.03.009

  • Popova AV, Rausch S, Hundertmark M, Gibon Y, Hincha DK (2015) The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochim Biophys Acta 1517–1525

  • Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28(6):709–718

    Article  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei HUI, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31(12):1781–1790. https://doi.org/10.1111/j.1365-3040.2008.01879.x

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Salazar J, Moreno S, Espín G (2017) LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii. Cell Stress Chaperones 22(3):397–408. https://doi.org/10.1007/s12192-017-0781-1

  • Rodríguez-Salazar J, Almeida-Juarez AG, Ornelas-Ocampo K, Millán-López S, Raga-Carbajal E, Rodríguez-Mejía JL, Muriel-Millán LF, Godoy-Lozano EE, Rivera-Gómez N, Rudiño-Piñera E, Pardo-López L (2020) Characterization of a novel functional trimeric catechol 1,2-dioxygenase from a Pseudomonas stutzeri isolated from the Gulf of Mexico. Front Microbiol 4(11):1100https://doi.org/10.3389/fmicb.2020.01100

  • Ruiz-Dueñas FJ, Martínez AT (2010). Structural and functional features of peroxidases with a potential as industrial biocatalysts. In: Torres E., Ayala M. (eds) Biocatalysis Based on Heme Peroxidases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12627-7_3

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 7:52(7):1950–1957. https://doi.org/10.1021/jf035216

  • Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87(2):415–430. https://doi.org/10.1139/o09-001

    Article  CAS  PubMed  Google Scholar 

  • Shih MD, Hsieh TY, Jian WT, Wu MT, Yang SJ, Hoekstra FA, Hsing YIC (2012). Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy. Plant Sci 196:152–159.

  • Shimizu T, Korehisa T, Imanaka H, Ishida N, Imamura K (2017) Characteristics of proteinaceous additives in stabilizing enzymes during freeze-thawing and - drying. Biosci Biotechnol Biochem 81:687–697

    Article  CAS  Google Scholar 

  • Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128(3):822–32. https://doi.org/10.1104/pp.010521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of group 1 late- embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478. https://doi.org/10.1007/s004250050424

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Rikkerink EHA, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25:38–55. https://doi.org/10.1105/tpc.112.106062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  CAS  Google Scholar 

  • Thalhammer A, Hundertmark M, Popova AV, Seckler R, Hincha DK (2010) Interaction of two intrinsically disordered plant stress proteins (COR15 A and COR15B) with lipid membranes in the dry state. Biochim Biophys Acta 1798:1812–1820. https://doi.org/10.1016/j.bbamem.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19(5):1580–1589. https://doi.org/10.1105/tpc.107.050104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  Google Scholar 

  • Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci: A Publication of the Protein Society. 2013; 22(6):693–724. https://doi.org/10.1002/pro.2261.

  • Vela GR (1974) Survival of Azotobacter in dry soil. Appl Microbiol 28(1):77–79

  • Wang H, Wu Y, Yang X, Guo X, Cao X (2017) SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma 254:685–696

    Article  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  Google Scholar 

  • Yamaguchi A, Tanaka S, Yamaguchi S, Kuwahara H, Takamura C, Imajoh-Ohmi S, Horikawa DD, Toyoda A, Katayama T, Arakawa K, Fujiyama A, Kubo T, Kunieda T (2012) Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade. PLoS ONE 7(8):e44209. https://doi.org/10.1371/journal.pone.0044209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen F, Watson M, Barker R, Grillo I, Heenan RK, Tunnacliffe A, Routh AF (2019) Preferential adsorption to air-water interfaces: a novel cryoprotective mechanism for LEA proteins. Biochem J 476(7):1121–1135. https://doi.org/10.1042/BCJ20180901

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lu S, Jiang C, Wang Y, Lv B, Shen J, Ming F (2014) RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Mol Biol 85(4–5):333–347. https://doi.org/10.1007/s11103-014-0192-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by PAPIIT-DGAPA IN207019. LPL received financial support from PASPA DGAPA-UNAM for a sabbatical year.

Author information

Authors and Affiliations

Authors

Contributions

ER-C, JR-S, and LP-L contributed to the design and implementation of the research. ER-C performed the experiments and analyzed the data. ER-C, JR-S, LP-L EG-E, and MA contributed to the writing of the manuscript and approved the final version.

Corresponding authors

Correspondence to Julieta Rodríguez-Salazar or Liliana Pardo-López.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raga-Carbajal, E., Espin, G., Ayala, M. et al. Evaluation of a bacterial group 1 LEA protein as an enzyme protectant from stress-induced inactivation. Appl Microbiol Biotechnol 106, 5551–5562 (2022). https://doi.org/10.1007/s00253-022-12080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12080-0

Keywords

Navigation