Skip to main content
Log in

Effect of temperature on the production of a recombinant antivenom in fed-batch mode

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the pharmaceutical industry, nanobodies show promising properties for its application in serotherapy targeting the highly diffusible scorpion toxins. The production of recombinant nanobodies in Escherichia coli has been widely studied in shake flask cultures in rich medium. However, there are no upstream bioprocess studies of nanobody production in defined minimal medium and the effect of the induction temperature on the production kinetics. In this work, the effect of the temperature during the expression of the chimeric bispecific nanobody CH10-12 form, showing high scorpion antivenom potential, was studied in bioreactor cultures of E. coli. High biomass concentrations (25 g cdw/L) were achieved in fed-batch mode, and the expression of the CH10-12 nanobody was induced at temperatures 28, 29, 30, 33, and 37°C with a constant glucose feed. For the bispecific form NbF12-10, the induction was performed at 29°C. Biomass and carbon dioxide yields were reported for each culture phase, and the maintenance coefficient was obtained for each strain. Nanobody production in the CH10-12 strain was higher at low temperatures (lower than 30°C) and declined with the increase of the temperature. At 29°C, the CH10-12, NbF12-10, and WK6 strains were compared. Strains CH10-12 and NbF12-10 had a productivity of 0.052 and 0.021 mg/L/h of nanobody, respectively, after 13 h of induction. The specific productivity of the nanobodies was modeled as a function of the induction temperature and the specific growth rates. Experimental results confirm that low temperatures increase the productivity of the nanobody.

Key points

Nanobodies with scorpion antivenom activity produced using two recombinant strains.

Nanobodies production was achieved in fed-batch cultures at different induction temperatures.

Low induction temperatures result in high volumetric productivities of the nanobody CH10-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abderrazek RB, Hmila I, Vincke C, Benlasfar Z, Pellis M, Dabbek H, Saerens D, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B (2009) Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Biochem J 424:263–272

  • Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D, Habibi-Anbouhi M, Hosseininejad Chafi M, Sotoudeh N, Ghaderi H, Muyldermans S, Behdani M (2018) Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta - Gen Subj 1862:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Alonso Villela SM, Kraïem H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L (2020) A protocol for recombinant protein quantification by densitometry. Microbiologyopen 9:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Amillastre E, Aceves-Lara C-A, Uribelarrea J-L, Alfenore S, Guillouet SE (2012) Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae. Bioresour Technol 117:242–250

    Article  CAS  PubMed  Google Scholar 

  • Andersson L, Yang S, Neubauer P, Enfors SO (1996) Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J Biotechnol 46:255–263

    Article  CAS  PubMed  Google Scholar 

  • Ariff AB, Nelofer R, Rahman RNZRA, Basri M (2015) Kinetics and modelling of batch fermentation for the production of organic solvent tolerant and thermostable lipase by recombinant E. coli. Turkish J Biochem 40:298–309

    Article  Google Scholar 

  • Aubrey N, Devaux C, Sizaret PY, Rochat H, Goyffon M, Billiald P (2003) Design and evaluation of a diabody to improve protection against a potent scorpion neurotoxin. Cell Mol Life Sci 60:617–628

    Article  CAS  PubMed  Google Scholar 

  • Aucoin MG, McMurray-Beaulieu V, Poulin F, Boivin EB, Chen J, Ardelean FM, Cloutier M, Choi YJ, Miguez CB, Jolicoeur M (2006) Identifying conditions for inducible protein production in E. coli: combining a fed-batch and multiple induction approach. Microb Cell Fact 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Betenbaugh MJ, Dhurjati P (1990) A comparison of mathematical model predictions to experimental measurements for growth and recombinant protein production in induced cultures of Escherichia coli. Biotechnol Bioeng 36:124–134

    Article  CAS  PubMed  Google Scholar 

  • Blight MA, Chervaux C, Holland IB (1994) Protein secretion pathway in Escherichia coli. Curr Opin Biotechnol 5:468–474

    Article  CAS  PubMed  Google Scholar 

  • Bouhaouala-Zahar B, Ben Abderrazek R, Hmila I, Abidi N, Muyldermans S, El Ayeb M (2011) Immunological aspects of scorpion toxins: current status and perspectives. Inflamm Allergy Drug Targets 10:358–368

    Article  CAS  PubMed  Google Scholar 

  • Çalik P, Yilgör P, Ayhan P, Demir AS (2004) Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci 59:5075–5083

    Article  Google Scholar 

  • Calleja D, Kavanagh J, de Mas C, López-Santín J (2016) Simulation and prediction of protein production in fed-batch E. coli cultures: an engineering approach. Biotechnol Bioeng 113:772–782

    Article  CAS  PubMed  Google Scholar 

  • Calleja Martínez D (2014) Modeling bioreactors for the production of recombinant proteins in high-cell density cultures of Escherichia coli. Dissertation, Universitat Autònoma de Barcelona

  • Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E (2015) Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 97:64–74

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Gonçalves VM (2012) Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. Appl Microbiol Biotechnol 94:683–694

    Article  CAS  PubMed  Google Scholar 

  • Chgoury F, Benabderrazek R, Tounsi H, Oukkache N, Hmila I, Boubaker S, Ayeb M, Saïle R, Ghalim N, Bouhaouala-Zahar B (2015) Effectiveness of the Androctonus australis hector nanobody Nbf12-10 antivenom to neutralize significantly the toxic effect and tissue damage provoked by fraction of Androctonus mauretanicus (Morocco) scorpion venom. Biochem Pharmacol Open Access 04:4–11

    Google Scholar 

  • Cockshott A, Bogle I (1999) Modelling the effects of glucose feeding on a recombinant E. coli fermentation. Bioprocess Eng 20:83–90

    CAS  Google Scholar 

  • Darvish M, Behdani M, Shokrgozar MA, Pooshang-Bagheri K, Shahbazzadeh D (2015) Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody. Mol Immunol 68:412–420

    Article  CAS  PubMed  Google Scholar 

  • De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:263–270

    Article  PubMed  Google Scholar 

  • Deffar K, Shi H, Li L, Wang X, Zhu X (2009) Nanobodies - the new concept in antibody engineering. African J Biotechnol 8:2645–2652

    CAS  Google Scholar 

  • Dela Coletta Troiano Araújo L, Wibrantz M, Rodríguez-Fernández DE, Karp SG, Talevi AC, Maltempi de Souza E, Soccol CR, Thomaz-Soccol V (2019) Process parameters optimization to produce the recombinant protein CFP10 for the diagnosis of tuberculosis. Protein Expr Purif 154:118–125

    Article  Google Scholar 

  • Devaux C, Moreau E, Goyffon M, Rochat H, Billiald P (2001) Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin Aahl from the venom of the scorpion Androctonus australis hector. Eur J Biochem 268:694–702

    Article  CAS  PubMed  Google Scholar 

  • Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Vande WA (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364

    Article  CAS  PubMed  Google Scholar 

  • Donovan RS, Robinson CW, Glick BR (1996) Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol 16:145–154

  • Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, Lorenzo V, Prokop Z, Damborsky J (2015) Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 14:1–15

    Article  Google Scholar 

  • Goma G, Moletta R, Novak M (1979) Comments on the “Maintenance coefficient” changes during alcohol fermentation. Biotechnol Lett 1:415–420

    Article  CAS  Google Scholar 

  • Gupta SK, Shukla P (2017) Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 43:31–42

    Article  CAS  PubMed  Google Scholar 

  • Hmila I, Abdallah RBA-B, Saerens D, Benlasfar Z, Conrath K, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B (2008) VHH, bivalent domains and chimeric heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’. Mol Immunol 45:3847–3856

    Article  CAS  PubMed  Google Scholar 

  • Hmila I, Cosyns B, Tounsi H, Roosens B, Caveliers V, Abderrazek RB, Boubaker S, Muyldermans S, El Ayeb M, Bouhaouala-Zahar B, Lahoutte T (2012) Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicol Appl Pharmacol 264:222–231

    Article  CAS  PubMed  Google Scholar 

  • Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N, Benlasfar Z, Govaert J, El Ayeb M, Bouhaouala-Zahar B, Muyldermans S (2010) A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 24:3479–3489

    Article  CAS  PubMed  Google Scholar 

  • Hua X, Fan D, Luo Y, Zhang X, Shi H, Mi Y, Ma X, Shang L, Zhao G (2006) Kinetics of high cell density fed-batch culture of recombinant Escherichia coli producing human-like collagen. Chinese J Chem Eng 14:242–247

    Article  CAS  Google Scholar 

  • Huang C-J, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    Article  CAS  PubMed  Google Scholar 

  • Jenzsch M, Simutis R, Luebbert A (2006) Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. J Biotechnol 122:483–493

    Article  CAS  PubMed  Google Scholar 

  • Jhamb K, Sahoo DK (2012) Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour Technol 123:135–143

    Article  CAS  PubMed  Google Scholar 

  • Kosinski M, Rinas U, Bailey J (1992) Isopropyl-beta-d-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl Microbiol Biotechnol 36:844–850

    Article  Google Scholar 

  • Kraïem H (2018) Développement de méthodes de contrôle-qualité pour deux facteurs de croissance et un fragment d’anticorps: «Mise au point et optimisation de tests immuno-biochimiques et fonctionnelles in vivo et in vitro». Dissertation, Institut Pasteur de Tunis, Unimed Laboratories, Institut National de Sciences Appliquées et de Technologie

  • Kraïem H, Manon Y, Hmila I, Ben Abderrazek R, Alonso Villela SM, Luc F, Bouhaouala-Zahar B (2019) Expression of the recombinant NbF12-10 and its chimeric antibody format in Escherichia coli: investigation of fed-batch bioprocess on minimal media. In: Second Mediterranean Congress on Biotechnology. Hammamet, Tunisia

  • Levisauskas D, Galvanauskas V, Henrich S, Wilhelm K, Volk N, Lübbert A (2003) Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst Eng 25:255–262

    Article  CAS  PubMed  Google Scholar 

  • Mergulhão FJM, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  PubMed  Google Scholar 

  • Miao F, Kompala DS (1993) Overexpression of cloned genes using recombinant Escherichia coli regulated by a t7 promoter .2. 2-Stage continuous cultures and model simulations. Biotechnol Bioeng 42(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  PubMed  Google Scholar 

  • Nadri M, Trezzani I, Hammouri H, Dhurjati P, Longin R, Lieto J (2006) Modeling and observer design for recombinant Escherichia coli strain. Bioprocess Biosyst Eng 28:217–225

    Article  CAS  PubMed  Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    Article  CAS  PubMed  Google Scholar 

  • Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19:590–601

    Article  CAS  PubMed  Google Scholar 

  • Palaiomylitou MA, Matis KA, Zouboulis AI, Kyriakidis DA (2002) A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli. Biotechnol Bioeng 78:321–332

    Article  CAS  PubMed  Google Scholar 

  • Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, Muyldermans S, Hol WGJ, Kobilka BK, Steyaert J (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9:674–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proceedings Biol Sci 163:224–231

    CAS  Google Scholar 

  • Ramchuran SO, Holst O, Karlsson EN (2005) Effect of postinduction nutrient feed composition and use of lactose as inducer during production of thermostable xylanase in Escherichia coli glucose-limited fed-batch cultivations. J Biosci Bioeng 99:477–484

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Article  Google Scholar 

  • Ruiz J, González G, de Mas C, López-Santín J (2011) A semiempirical model to control the production of a recombinant aldolase in high cell density cultures of Escherichia coli. Biochem Eng J 55:82–91

    Article  CAS  Google Scholar 

  • Ruiz J, Pinsach J, Álvaro G, González G, de Mas C, Resina D, López-Santín J (2009) Alternative production process strategies in E. coli improving protein quality and downstream yields. Process Biochem 44:1039–1045

    Article  CAS  Google Scholar 

  • Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, Teira X, Gutierrez C, Bodelón G, Fernández LÁ (2013) Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two β-domains of opposite topologies. PLoS One 8:1–18

    Article  Google Scholar 

  • Schmideder A, Cremer JH, Weuster-Botz D (2016) Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli. Biotechnol Prog 32:1426–1435

    Article  CAS  PubMed  Google Scholar 

  • Selisko B, Cosío G, García C, Becerril B, Possani LD, Horjales E (2004) Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion Centruroides noxius hoffmann. Toxicon 43:43–51

    Article  CAS  PubMed  Google Scholar 

  • Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13:249–257

    Article  CAS  PubMed  Google Scholar 

  • Sunya S (2012) Dynamique de la réponse physiologique d’Escherichia coli à des perturbations maîtrisées de son environnement: vers le développement de nouveaux outils de changement d’échelle. Dissertation, INSA Toulouse

  • Sunya S, Delvigne F, Uribelarrea J-L, Molina-Jouve C, Gorret N (2012) Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities. Appl Microbiol Biotechnol 95:1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Tartof KD, Hobbs CA (1987) Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus 9:12

    Google Scholar 

  • Tomazetto G, Mulinari F, Stanisçuaski F, Settembrini B, Carlini CR, Ayub MAZ (2007) Expression kinetics and plasmid stability of recombinant E. coli encoding urease-derived peptide with bioinsecticide activity. Enzyme Microb Technol 41:821–827

    Article  CAS  Google Scholar 

  • van Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb Ecol 53:513–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrell D, Gutierrez J-M, Padilla A (2007) Rabies and envenomings: a neglected public health issue: report of a Consultative Meeting. Geneva, Switzerland

  • Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, Wan Y (2015) Characterization and applications of Nanobodies against human procalcitonin selected from a novel naive Nanobody phage display library. J Nanobiotechnology 13:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Yee L, Blanch HW (1993) Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol Bioeng 41:781–790

    Article  CAS  PubMed  Google Scholar 

  • Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology (N Y) 10:1550–1556

    CAS  Google Scholar 

  • Zheng ZY, Yao SJ, Lin DQ (2005) Using a kinetic model that considers cell segregation to optimize hEGF expression in fed-batch cultures of recombinant Escherichia coli. Bioprocess Biosyst Eng 27:143–152

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Susana María Alonso Villela is grateful to the National Council of Science and Technology (CONACYT, Mexico) for the doctoral scholarship No. 461347.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SMAV, BBZ, LF, CAAL. Formal analysis: SMAV, HGK, BBZ, CB, CAAL, LF. Investigation: SMAV. Software: SMAV, CAAL. Supervision: LF, CAAL. Writing—original draft preparation: SMAV. Writing—editing review: SMAV, HGK, BBZ, CB, CAAL, LF.

Corresponding author

Correspondence to Susana María Alonso Villela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso Villela, S.M., Ghezal-Kraïem, H., Bouhaouala-Zahar, B. et al. Effect of temperature on the production of a recombinant antivenom in fed-batch mode. Appl Microbiol Biotechnol 105, 1017–1030 (2021). https://doi.org/10.1007/s00253-021-11093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11093-5

Keywords

Navigation