Skip to main content
Log in

SUMO-fusion and autoinduction-based combinatorial approach for enhanced production of bioactive human interleukin-24 in Escherichia coli

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

High-level production of recombinant human interleukin-24 (IL-24), a multifunctional immunomodulatory cytokine, has been challenging due primarily to its aggregation as inclusion bodies in the bacterial host while persistent poor-expression in the insect/mammalian expression systems. The present study presents a robust, vector-host combination (pE-SUMO-IL24), auto-inducible medium (YNG/M9NG), and a simple purification scheme for soluble, bioactive, and cost-effective production of native-like IL-24 (nIL-24) in Escherichia coli. The final protein yield, following a three-step purification scheme (IMAC, SEC, dialysis), was 98 mg/L in shake-flask culture (with scale-up potential), which was several folds higher than reported earlier. In vitro cytotoxicity assays with HeLa and HCT116 cancer cell lines (performed using different concentrations of nIL-24) and the fluorescence activated cell sorting analysis (FACS) revealed a dose- and concentration-dependent increase in the population of pro-apoptotic cells with concomitant, statistically significant drop in the number of cells existent at Go/G1-, S-, and G2/M-phases (P < 0.002). The bioactive nIL-24, developed through this study, holds promise for use in further functional characterizations/applications.

Key points

Yeast SUMO fusion partner at N-terminus for improved solubility of an otherwise insoluble IL-24 in E. coli.

Enhanced cell densities with concomitant several-fold increase in protein yield by lactose-inducible media.

Improved inhibition of cervical and colorectal carcinomas by native-like nIL-24 compared with Met-containing IL.

Heterologous nIL-24 may enable better understanding of the functional intricacies linked up with its unique cancer-specific features.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bashir S, Sadaf S, Ahmad S, Akhtar MW (2017) Synonymous codon changes at the 5'-end of the gene strongly impact the heterologous protein expression in Escherichia coli. Appl Biochem Microbiol 53(3): 296–303 https://doi.org/10.1134/S0003683817030024

  • Bhoopathi P, Lee N, Pradhan AK, Shen XN, Das SK, Sarkar D, Emdad L, Fisher PB (2016) Mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM. Cancer Res 76:3572–3582

    CAS  Google Scholar 

  • Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichorism spectra by neutral networks. Protein Eng 5:191–195

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D, Zheng M, Grimm EA, Ekmekcioglu S (2004) Bystander activity of Ad-mda7: human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther 10:1085–1095

    CAS  Google Scholar 

  • Cruz A, Nguyen B, Sauane M, Lopez GE (2016) Structural and functional characterization of interleukin-24 based on atomistic molecular modelling. Chem Lett 45:327–329

    CAS  Google Scholar 

  • Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Mhashilkar A, Parker K, Vukelja S, Richards D, Hood J, Coffee K, Nemunaitis J (2005) Clinical and local effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 11:149–159

    CAS  Google Scholar 

  • Dent P, Yacoub A, Grant S, Curiel DT, Fisher PB (2005) MDA-7/IL-24 regulates proliferation, invasion and tumour cell radio-sensitivity: a new cancer therapy? J Cell Biochem 95:712–719

    CAS  Google Scholar 

  • Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak M, Grant S, Curiel DT, Fisher PB (2010) MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs 21:725–731

    CAS  Google Scholar 

  • Gopalkrishnan R (2002) INGN-241: Introgen. Curr Opin Investig Drugs 3:1773–1777

    CAS  Google Scholar 

  • Gupta P, Emdad L, Lebedeva IV, Sarkar D, Dent P, Curiel DT, Settleman J, Fisher PB (2008) Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 215:827–836

    CAS  Google Scholar 

  • Han Y, Guo W, Su B, Guo Y, Wang J, Chu B, Yang G (2018) High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag. Protein Expr Purif 142:25–31

    CAS  Google Scholar 

  • Hosseini E, Hosseini SY, Hashempour T, Fattahi MR, Sadeghizadeh M (2017) Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Mol Med Rep 15:495–501

    CAS  Google Scholar 

  • Huang CJ, Lin H, Yang H (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    CAS  Google Scholar 

  • Ikram N, Naz S, Rajoka MI, Sadaf S, Akhtar MW (2009) Enhanced production of subtilisin of Pyrococcus furiosus expressed in Escherichia coli using auto-inducing medium. Afr J Biotechnol 8(21):5867–5872

    CAS  Google Scholar 

  • Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M, Tanaka F, Mhashilkar AM, Chada S, Ramesh R (2006) MDA-7/IL24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther 6:73–91. https://doi.org/10.2174/156652306775515574

    Article  CAS  Google Scholar 

  • Jiang G, Jiang AJ, Cheng Q, Tian H, Li LT, Zheng JN (2013) A dual-regulated oncolytic adenovirus expressing interleukin-24 sensitizes melanoma cells to temozolomide via the induction of apoptosis. Tumor Biol 34:1263–1271

    CAS  Google Scholar 

  • Jiang G, Yang CS, Xu D, Sun C, Zheng JN, Lei TC, Liu YQ (2014) Potent anti-tumour activity of a novel conditionally replicating adenovirus for melanoma via inhibition of migration and invasion. Br J Cancer 110:2496–2505

    CAS  Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Google Scholar 

  • Khan MIM, Sajjad M, Sadaf S, Zafar R, Niazi UHK, Akhtar MW (2013) The nature of the carbohydrate binding module determines thecatalytic efficiency of xylanase Z of Clostridium thermocellum. J Biotechnol 168:403–408

    CAS  Google Scholar 

  • Kreis S, Philippidou D, Margue C, Rolvering C, Haan C, Dumoutier L, Renauld JC, Behrmann I (2007) Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells. PLoS One 12:e1300. https://doi.org/10.1371/journal.pone.0001300

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB (2002) The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 21:708–718

    CAS  Google Scholar 

  • Liu JJ, Zhang BF, Yin XX, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN (2012) Expression, purification, and characterization of RGD-mda-7, a His-tagged mda-7/IL-24 mutant protein. J Immunoass Immunochem 33:352–368

    Google Scholar 

  • Loughran ST, Walls D (2017) Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 1485:131–156

    CAS  Google Scholar 

  • Lv C, Su Q, Liang Y, Hu J, Yuan S (2016) Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis. Biochem Biophys Res Commun 476:21–28

    CAS  Google Scholar 

  • Ma M, Zhao L, Sun G, Zhang C, Liu L, Du Y, Yang X, Shan B (2016) Mda-7/IL-24 enhances sensitivity of B cell lymphoma to chemotherapy drugs. Oncol Rep 35(5):3122–3130

    CAS  Google Scholar 

  • Ma C, Zhao LL, Zhao HK, Cui JW, Li W, Wang NY (2018) Lentivirus-mediated MDA7/IL24 expression inhibits the proliferation of hepatocellular carcinoma cells. Mol Med Rep 17:5764–5773

    CAS  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75–86

    CAS  Google Scholar 

  • Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB (2015) MDA-7/IL-24 functions as a tumour suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 6:36928–36942

    Google Scholar 

  • Menezes ME, Bhoopathi P, Pradhan AK, Emdad L, Das SK, Guo C, Wang XY, Sarkar D, Fisher PB (2018) Role of MDA-7/IL-24: a multifunction protein in human diseases. Adv Cancer Res 138:143–182

    CAS  Google Scholar 

  • Panneerselvam J, Srivastava A, Muralidharan R, Wang Q, Zheng W, Zhao L, Chen A, Zhao YD, Munshi A, Ramesh R (2016) IL-24 modulates the high mobility group A1/miR222/AKT signalling in lung cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.11838

  • Pei DS, Yang ZX, Zhang BF, Yin XX, Li HZ, Zheng JN (2012) Enhanced apoptosis-inducing function of MDA-7/IL-24 RGD mutant via the increased adhesion to tumor cells. J Interf Cytokine Res 32:66–73

    CAS  Google Scholar 

  • Persaud L, Jesus DD, Brannigan O, Paredes MR, Huaman J, Alvarado G, Riker L, Mendez G, Dejoie J, Sauane M (2016) Mechanism of action and applications of interleukin 24 in immunotherapy. Int J Mol Sci 17:869. https://doi.org/10.3390/ijms17060869

    Article  CAS  Google Scholar 

  • Poindexter NJ, Walch ET, Chada S, Grimm EA (2005) Cytokine induction of interleukin-24 in human peripheral blood mononuclear cells. J Leukoc Biol 78:745–752. https://doi.org/10.1189/jlb.0205116

    Article  CAS  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  Google Scholar 

  • Sadaf S, Khan MA, Akhtar MW (2007a) Production of bubaline somatotropin by auto-induction in Escherichia coli. Biotechnol Appl Biochem 47:21–26

    CAS  Google Scholar 

  • Sadaf S, Khan MA, Wilson DB, Akhtar MW (2007b) Molecular cloning, characterization, and expression studies of water buffalo (Bubalus bubalis) somatotropin. Biochem Mosc 72:162–169

    CAS  Google Scholar 

  • Sadaf S, Khan MA, Akhtar MW (2008) Expression enhancement of bubaline somatotropin in E. coli through gene modifications in the 5′-end coding region. J Biotechnol 135:134–139

    CAS  Google Scholar 

  • Sambrook J, Russell EF (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, Fisher PB (2007) Melanoma differentiation associated gene-7 (mda-7)/IL-24: A magic bullet for cancer therapy? Expert Opin Biol Ther 7:577–586

    CAS  Google Scholar 

  • Sauane M, Gopalkrishnan RV, Choo HT, Gupta P, Lebedeva IV, Yacoub A, Dent P, Fisher PB (2004) Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein. Oncogene 23:7679–7690

    CAS  Google Scholar 

  • Shapiro BA, Vu NT, Shultz MD, Shultz JC, Mietla JA, Gouda MM, Yacoub A, Dent P, Fisher PB, Park MA, Chalfant CE (2016) Melanoma differentiation-associated gene 7/IL-24 exerts cytotoxic effects by altering the alternative splicing of Bcl-x pre-mRNA via the SRC/PKCδ signalling axis. J Biol Chem 291:21669–21681

    CAS  Google Scholar 

  • Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW, Chen SY, Pataer A, Swisher SG, Grimm EA, Ramesh R, Chada S (2004) The tumor suppressor activity of MDA-7/IL-24 is mediated by intracellular protein expression in NSCLC cells. Mol Ther 9:355–367

    CAS  Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of inclusion body proteins. J Biosci Bioeng 99:303–310

    CAS  Google Scholar 

  • Vincentelli R, Romier C (2013) Expression in Escherichia coli: becoming faster and more complex. Curr Opin Struct Biol 23:326–334

    CAS  Google Scholar 

  • Xiao B, Li W, Yang J, Guo G, Mao XH, Zou QM (2009) RGD-IL-24, a novel tumor-targeted fusion cytokine: expression, purification and functional evaluation. Mol Biotechnol 41:138–144

    CAS  Google Scholar 

  • Yang J, Zhang W, Liu K, Jing S, Guo G, Luo P, Zou Q (2007) Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli. Protein Expr Purif 53:339–345

    CAS  Google Scholar 

  • Zahradník J, Kolářová L, Peleg Y, Kolenko P, Svidenská S, Charnavets T, Unger T, Sussman JL, Schneider B (2019) Flexible regions govern promiscuous binding of IL-24 to receptors IL-20R1 and IL-22R1. FEBS J 286:3858–3873. https://doi.org/10.1111/febs.14945

    Article  CAS  Google Scholar 

  • Zhang J, Lv X, Xu R, Tao X, Dong Y, Sun A, Wei D (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl Microbiol Biotechnol 99:6705–6713

    CAS  Google Scholar 

  • Zhuo B, Shi Y, Qin H, Sun Q, Li Z, Zhang F, Wang R, Wang X (2017) Interleukin-24 inhibits osteosarcoma cell migration and invasion via the JNK/c-Jun signaling pathways. Oncol Lett 13:4505–4511

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Dr. A. R. Shakoori (SBS, PU) and Prof. Dr. Idrees Khan (CEMB, PU) for permission to use their cell culture laboratories and the Research Associate Ms. Saira Aftab (SBS, PU) for her initial help in cell culturing experiments.

Funding

This study was partially supported by research grants from COMSTECH-TWAS (09-035-RG/PHA/AS) and University of the Punjab, Lahore, Principal Investigator of which was Dr. Saima Sadaf.

Author information

Authors and Affiliations

Authors

Contributions

Vectors construction, wet-lab experimentation, software, and first draft preparation (jointly by ST and MI); conceptualization, study design, and research supervision (SS); manuscript review, editing, and data analysis (SS, MWA, TS, QW). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saima Sadaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

“This article does not contain any studies with human participants or animals, performed by any of the authors.”

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 293 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, S., Iqbal, M.M., Akhtar, M.W. et al. SUMO-fusion and autoinduction-based combinatorial approach for enhanced production of bioactive human interleukin-24 in Escherichia coli. Appl Microbiol Biotechnol 104, 9671–9682 (2020). https://doi.org/10.1007/s00253-020-10921-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10921-4

Keywords

Navigation