Skip to main content

Advertisement

Log in

Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological nitrogen fixation (BNF) is accomplished through the action of the oxygen-sensitive enzyme nitrogenase. One unique caveat of this reaction is the inclusion of hydrogen gas (H2) evolution as a requirement of the reaction mechanism. In the absence of nitrogen gas as a substrate, nitrogenase will reduce available protons to become a directional ATP-dependent hydrogenase. Aerobic nitrogen-fixing microbes are of particular interest, because these organisms have evolved to perform these reactions with oxygen-sensitive enzymes in an environment surrounded by oxygen. The ability to maintain a functioning nitrogenase in aerobic conditions facilitates the application of these organisms under conditions where most anaerobic nitrogen fixers are excluded. In recent years, questions related to the potential yields of the nitrogenase-derived products ammonium and H2 have grown more approachable to experimentation based on efforts to construct increasingly more complicated strains of aerobic nitrogen fixers such as the obligate aerobe Azotobacter vinelandii. This mini-review provides perspectives of recent and historical efforts to understand and quantify the yields of ammonium and H2 that can be obtained through the model aerobe A. vinelandii, and outstanding questions that remain to be answered to fully realize the potential of nitrogenase in these applications with model aerobic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari S, Fernando S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res 45(3):875–881

    CAS  Google Scholar 

  • Ambrosio R, Ortiz-Marquez JCF, Curatti L (2017) Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metab Eng 40:59–68

    CAS  PubMed  Google Scholar 

  • Bali A, Blanco G, Hill S, Kennedy C (1992) Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58(5):1711–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay A, Stöckel J, Min HT, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:7

    Google Scholar 

  • Barney BM, Igarashi RY, Dos Santos PC, Dean DR, Seefeldt LC (2004) Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J Biol Chem 279(51):53621–53624

    CAS  PubMed  Google Scholar 

  • Barney BM, Laryukhin M, Igarashi RY, Lee HI, Dos Santos PC, Yang TC, Hoffman BM, Dean DR, Seefeldt LC (2005) Trapping a hydrazine reduction intermediate on the nitrogenase active site. Biochemistry 44(22):8030–8037

    CAS  PubMed  Google Scholar 

  • Barney BM, Lee HI, Dos Santos PC, Hoffman BM, Dean DR, Seefeldt LC (2006) Breaking the N2 triple bond: insights into the nitrogenase mechanism. Dalton Trans (19):2277–2284

  • Barney BM, McClead J, Lukoyanov D, Laryukhin M, Yang TC, Dean DR, Hoffman BM, Seefeldt LC (2007) Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. Biochemistry 46(23):6784–6794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barney BM, Lukoyanov D, Igarashi RY, Laryukhin M, Yang TC, Dean DR, Hoffman BM, Seefeldt LC (2009a) Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. Biochemistry 48(38):9094–9102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barney BM, Yurth MG, Dos Santos PC, Dean DR, Seefeldt LC (2009b) A substrate channel in the nitrogenase MoFe protein. J Biol Inorg Chem 14(7):1015–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH (2015) Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: application of a novel nitrogen biosensor. Appl Environ Microbiol 81(13):4316–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barney BM, Plunkett MH, Natarajan V, Mus F, Knutson CM, Peters JW (2017) Transcriptional analysis of an ammonium-excreting strain of Azotobacter vinelandii deregulated for nitrogen fixation. Appl Environ Microbiol 83(20):e01534–e01517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batista MB, Dixon R (2019) Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans 47(2):603–614

    CAS  Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Science 333(6041):416–417

    CAS  PubMed  Google Scholar 

  • Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie LM, Isern NG, Chrisler WB, Kucek LA, Hill EA, Pinchuk GE, Bryant DA, Wiley HS, Fredrickson JK, Konopka A (2014) Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. ISME J 8(11):2243–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergersen FJ (1980) Methods for evaluating biological nitrogen fixation. J. Wiley, Chichester Eng.; New York

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza G, Flores VMQ, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rössle SC, Ürmenyi T, Pereira AR, Silva R, Rondinelli E, von Krüger W, Martins O, Baldani JI, Ferreira PCG (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pa1 5. BMC Genomics 10:17

    Google Scholar 

  • Bishop PE, Jarlenski DML, Hetherington DR (1982) Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. J Bacteriol 150(3):1244–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brewin B, Woodley P, Drummond M (1999) The basis of ammonium release in nifL mutants of Azotobacter vinelandii. J Bacteriol 181(23):7356–7362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burén S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 365(2):9

    Google Scholar 

  • Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96(7):2983–3011

    CAS  PubMed  Google Scholar 

  • Burgess BK, Jacobs DB, Stiefel EI (1980) Large-scale purification of high activity Azotobacter vinelandii nitrogenase. Biochim Biophys Acta 614(1):196–209

    CAS  PubMed  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16(2):79–101

    CAS  Google Scholar 

  • Christiansen J, Goodwin PJ, Lanzilotta WN, Seefeldt LC, Dean DR (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37(36):12611–12623

    CAS  PubMed  Google Scholar 

  • Christiansen J, Cash VL, Seefeldt LC, Dean DR (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem 275(15):11459–11464

    CAS  PubMed  Google Scholar 

  • Corbin JL (1984) Liquid chromatographic-fluorescence determination of ammonia from nitrogenase reactions: a 2-min assay. Appl Environ Microbiol 47(5):1027–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curatti L, Brown CS, Ludden PW, Rubio LM (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci U S A 102(18):6291–6296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danyal K, Inglet BS, Vincent KA, Barney BM, Hoffman BM, Armstrong FA, Dean DR, Seefeldt LC (2010) Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP. J Am Chem Soc 132(38):13197–13199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danyal K, Shaw S, Page TR, Duval S, Horitani M, Marts AR, Lukoyanov D, Dean DR, Raugei S, Hoffman BM, Seefeldt LC, Antony E (2016) Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. Proc Natl Acad Sci U S A 113(40):E5783–E5791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demmer JK, Bertsch J, Öppinger C, Wohlers H, Kayastha K, Demmer U, Ermler U, Müller V (2018) Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction. FEBS Lett 592(3):332–342

    CAS  PubMed  Google Scholar 

  • Dilworth MJ (1966) Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta 127(2):285–294

    CAS  PubMed  Google Scholar 

  • Dilworth MJ, Eldridge ME, Eady RR (1992) Correction for creatine interference with the direct indophenol measurement of NH3 in steady-state nitrogenase assays. Anal Biochem 207(1):6–10

    CAS  PubMed  Google Scholar 

  • Dilworth MJ, Eldridge ME, Eady RR (1993) The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on N2 reduction. Biochem J 289:395–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Postgate JR (1972) Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. Nature 237(5350):102–103

    CAS  PubMed  Google Scholar 

  • Earl CD, Ronson CW, Ausubel FM (1987) Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 169(3):1127–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhart LJ, Knutson CM, Barney BM (2016) A methodology for markerless genetic modifications in Azotobacter vinelandii. J Appl Microbiol 120(6):1595–1604

    CAS  PubMed  Google Scholar 

  • Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297(5587):1696–1700

    CAS  PubMed  Google Scholar 

  • Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082

    PubMed  Google Scholar 

  • Fixen KR, Zheng YN, Harris DF, Shaw S, Yang ZY, Dean DR, Seefeldt LC, Harwood CS (2016) Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A 113(36):10163–10167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fouts DE, Tyler HL, Deboy RT, Daugherty S, Ren QH, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):18

    Google Scholar 

  • Gavini N, Ma L, Watt G, Burgess BK (1994) Purification and characterization of a FeMo cofactor-deficient MoFe protein. Biochemistry 33(39):11842–11849

    CAS  PubMed  Google Scholar 

  • Geddes BA, Ryu MH, Mus F, Costas AG, Peters JW, Voigt CA, Poole P (2015) Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Curr Opin Biotechnol 32:216–222

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M (2005) Approaches to developing biological H2-photoproducing organisms and processes. Biochem Soc Trans 33:70–72

    CAS  PubMed  Google Scholar 

  • Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW (2011) Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 193(17):4477–4486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi RY, Dos Santos PC, Niehaus WG, Dance IG, Dean DR, Seefeldt LC (2004) Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. J Biol Chem 279(33):34770–34775

    CAS  PubMed  Google Scholar 

  • Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167(2):480–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang SB, Seefeldt LC, Peters JW (2000) Insights into nucleotide signal transduction in nitrogenase: protein with MgADP bound. Biochemistry 39(48):14745–14752

    CAS  PubMed  Google Scholar 

  • Jensen HL (1954) The Azotobacteriaceae. Bacteriol Rev 18(4):195–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda J (1995) Determination of ammonium in seawater based on the indophenol reaction with O-phenylphenol (OPP). Water Res 29(12):2746–2750

    CAS  Google Scholar 

  • Keable SM, Vertemara J, Zadvornyy OA, Eilers BJ, Danyal K, Rasmussen AJ, Gioia L, Zampella G, Seefeldt LC, Peters JW (2018) Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. J Inorg Biochem 180:129–134

    CAS  PubMed  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production-a review. Bioresour Technol 243:1194–1206

    CAS  PubMed  Google Scholar 

  • Knutson CM, Lenneman EM, Barney BM (2017) Marinobacter as a model organism for wax ester accumulation in bacteria. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer International Publishing, Cham, pp 1–22

    Google Scholar 

  • Knutson CM, Plunkett MH, Liming RA, Barney BM (2018) Efforts toward optimization of aerobic biohydrogen reveal details of secondary regulation of biological nitrogen fixation by nitrogenous compounds in Azotobacter vinelandii. Appl Microbiol Biotechnol 102(23):10315–10325

    CAS  PubMed  Google Scholar 

  • Koch B, Evans HJ, Russell S (1967) Properties of the nitrogenase system in cell-free extracts of bacteroids from soybean root nodules. Proc Natl Acad Sci U S A 58(4):1343–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N-2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24(11):1385–1391

    CAS  PubMed  Google Scholar 

  • Kumar G, Bakonyi P, Kobayashi T, Xu KQ, Sivagurunathan P, Kim SH, Buitrón G, Nemestóthy N, Belafi-Bakó K (2016) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sust Energ Rev 57:879–891

    CAS  Google Scholar 

  • Ledbetter R, Garcia-Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, Patterson A, Magnuson T, Jay ZJ, Duan HD, Miller J, Plunkett MH, Hoben JP, Barney BM, Carlson RP, Miller AF, Bothner B, King PW, Peters JW, Seefeldt LC (2017) The electron bifurcating FixABCX protein complex from Azotobacter vinelandii: generation of low-potential reducing equivalents for nitrogenase catalysis. Biochemistry 56(32):4177-4190

    CAS  PubMed  Google Scholar 

  • Levin DB, Azbar N (2012) Introduction: biohydrogen in perspective. In: State of the art and progress in production of biohydrogen. Bentham Science Publ, Sharjah

  • Linkerhägner K, Oelze J (1995) Hydrogenase does not confer significant benefits to Azotobacter vinelandii growing diazotrophically under conditions of glucose limitation. J Bacteriol 177(20):6018–6020

    PubMed  PubMed Central  Google Scholar 

  • Little R, Martinez-Argudo I, Dixon R (2006) Role of the central region of NifL in conformational switches that regulate nitrogen fixation. Biochem Soc Trans 34:162–164

    CAS  PubMed  Google Scholar 

  • Mackerras AH, Smith GD (1986) Evidence for direct repression of nitrogenase by ammonia in the cyanobacterium Anabaena cylindrica. Biochem Biophys Res Commun 134(2):835–844

    CAS  PubMed  Google Scholar 

  • Martin AE, Burgess BK, Iismaa SE, Smartt CT, Jacobson MR, Dean DR (1989) Construction and characterization of an Azotobacter vinelandii strain with mutations in the genes encoding flavodoxin and ferredoxin I. J Bacteriol 171(6):3162–3167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R (2004) The NifL-NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186(3):601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76(20):6741–6750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton WE, Dilworth MJ (2011) Assays of nitrogenase reaction products. In: Ribbe MW (ed) Nitrogen fixation: methods and protocols. Methods in Molecular Biology, vol 766. Humana Press Inc, Totowa, pp 105–127

    Google Scholar 

  • Noar JD, Bruno-Bárcena JM (2016) Protons and pleomorphs: aerobic hydrogen production in Azotobacters. World J Microbiol Biotechnol 32(2):8

    Google Scholar 

  • Noar J, Loveless T, Navarro-Herrero JL, Olson JW, Bruno-Bárcena JM (2015) Aerobic hydrogen production via nitrogenase in Azotobacter vinelandii CA6. Appl Environ Microbiol 81(13):4507–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ockwig NW, Nenoff TM (2007) Membranes for hydrogen separation. Chem Rev 107(10):4078–4110

    CAS  PubMed  Google Scholar 

  • Ortiz-Marquez JC, Do Nascimento M, Dublan MD, Curatti L (2012) Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78(7):2345–2352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Marquez JC, Do Nascimento M, Zehr JP, Curatti L (2013) Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol 31(9):521–529

    CAS  PubMed  Google Scholar 

  • Ortiz-Marquez JC, Do Nascimento M, Curatti L (2014) Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 23:154–164

    CAS  PubMed  Google Scholar 

  • Phair JW, Badwal SPS (2006) Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci Technol Adv Mater 7(8):792–805

    CAS  Google Scholar 

  • Piché-Choquette S, Constant P (2019) Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol 85(6):19

    Google Scholar 

  • Poza-Carrión C, Jiménez-Vicente E, Navarro-Rodríguez M, Echavarri-Erasun C, Rubio LM (2014) Kinetics of nif gene expression in a nitrogen-fixing bacterium. J Bacteriol 196(3):595–603

    PubMed  PubMed Central  Google Scholar 

  • Przybylski D, Rohwerder T, Dilßner C, Maskow T, Harms H, Müller RH (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99(5):2131–2145

    CAS  PubMed  Google Scholar 

  • Pühler A, Aguilar MO, Hynes M, Müller P, Klipp W, Priefer U, Simon R, Weber G (1984) Advances in the genetics of free-living and symbiotic nitrogen fixing bacteria. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research: proceedings of the 5th International Symposium on Nitrogen Fixation, Noordwijkerhout, The Netherlands, August 28 – September 3, 1983. Springer Netherlands, Dordrecht, pp 609-619

    Google Scholar 

  • Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamarudin SK, Daud WRW (2016) Overview biohydrogen technologies and application in fuel cell technology. Renew Sust Energ Rev 66:137–162

    CAS  Google Scholar 

  • Rey FE, Heiniger EK, Harwood CS (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73(5):1665–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyntjens B, Jollie DR, Stephens PJ, Gao-Sheridan HS, Burgess BK (1997) Purification and characterization of a fixABCX-linked 2[4Fe-4S] ferredoxin from Azotobacter vinelandii. J Biol Inorg Chem 2(5):595–602

    CAS  Google Scholar 

  • Richens DA, Simpson D, Peterson S, McGinn A, Lamb JD (2003) Use of mobile phase 18-crown-6 to improve peak resolution between mono- and divalent metal and amine cations in ion chromatography. J Chromatogr A 1016(2):155–164

    CAS  PubMed  Google Scholar 

  • Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Factories 11:18

    Google Scholar 

  • Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martinez-Romero JC, Reddy PM, Martínez-Romero E (2018) Nitrogen fixation in cereals. Front Microbiol 9:13

    Google Scholar 

  • Ruvkun GB, Sundaresan V, Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29(2):551–559

    CAS  PubMed  Google Scholar 

  • Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47(49):13004–13015

    CAS  PubMed  Google Scholar 

  • Schipke CG, Goodin DB, McRee DE, Stout CD (1999) Oxidized and reduced Azotobacter vinelandii ferredoxin I at 1.4 Å resolution: conformational change of surface residues without significant change in the [3Fe-4S]+/0 cluster. Biochemistry 38(26):8228–8239

    CAS  PubMed  Google Scholar 

  • Schmehl M, Jahn A, Vilsendorf AMZ, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241(5-6):602–615

    CAS  PubMed  Google Scholar 

  • Schöllhorn R, Burris RH (1966) Study of intermediates in nitrogen fixation. Fed Proc 25(2P1):710

    Google Scholar 

  • Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, Ackermann M (2016) Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol 1(6):7

    Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal HM, Spatzal T, Hill MG, Udit AK, Rees DC (2017) Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II. Protein Sci 26(10):1984–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segura D, Guzmán J, Espín G (2003) Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63(2):159–163

    CAS  PubMed  Google Scholar 

  • Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191(14):4534–4545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853

    CAS  Google Scholar 

  • Simó G, Fernández-Fernández E, Vila-Crespo J, Ruipérez V, Rodríguez-Nogales JM (2017) Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym 170:1–14

    PubMed  Google Scholar 

  • Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energ 36(13):7460–7478

    CAS  Google Scholar 

  • Smanski MJ, Bhatia S, Zhao DH, Park Y, Woodruff LBA, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32(12):1241–1249

    CAS  PubMed  Google Scholar 

  • Smith MJ, Francis MB (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth Biol 5(9):955–961

    CAS  PubMed  Google Scholar 

  • Steuber J, Vohl G, Casutt MS, Vorburger T, Diederichs K, Fritz G (2014) Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 516(7529):62–67

    CAS  PubMed  Google Scholar 

  • Stewart WD, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A 58(5):2071–2078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strandberg GW, Wilson PW (1968) Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol 14(1):25–31

    CAS  PubMed  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temme K, Zhao DH, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109(18):7085–7090

    PubMed  PubMed Central  Google Scholar 

  • Thorneley RNF, Deistung J (1988) Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex. Biochem J 253(2):587–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767–U21

    PubMed  PubMed Central  Google Scholar 

  • Vicente EJ, Dean DR (2017) Keeping the nitrogen-fixation dream alive. Proc Natl Acad Sci U S A 114(12):3009–3011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walmsley J, Kennedy C (1991) Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding three nitrogenases in Azotobacter vinelandii. Appl Environ Microbiol 57(2):622–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal L, Wiechmann A, Baker J, Minton NP, Müller V (2018) The Rnf Complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J Bacteriol 200(21):13

    Google Scholar 

  • Weyman PD, Pratte B, Thiel T (2010) Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 304(1):55–61

    CAS  PubMed  Google Scholar 

  • Wong TY, Maier RJ (1985) H2-dependent mixotrophic growth of N2-Fixing Azotobacter vinelandii. J Bacteriol 163(2):528–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JG, Xie XQ, Xiang N, Tian ZX, Dixon R, Wang YP (2018) Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci U S A 115(36):E8509–E8517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoch DC, Arnon DI (1972) Two biologically active ferredoxins from the aerobic nitrogen-fixing bacterium, Azotobacter vinelandii. J Biol Chem 247(14):4514–4520

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the MnDRIVE transdisciplinary research initiative through the University of Minnesota based on funding from the state of Minnesota, the National Institute of Food and Agriculture (Project Numbers MIN-12-070 and MIN-12-081), and from the National Science Foundation (CBET-1437758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett M. Barney.

Ethics declarations

Conflict of interest

The author is an inventor on US Patent 9,796,957, genetically modified diazotrophs and methods of using the same. The author holds no other financial conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barney, B.M. Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives. Appl Microbiol Biotechnol 104, 1383–1399 (2020). https://doi.org/10.1007/s00253-019-10210-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10210-9

Keywords

Navigation