Skip to main content

Advertisement

Log in

Yarrowia lipolytica: more than an oleaginous workhorse

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial production of fuels and chemicals offers a means by which sustainable product manufacture can be achieved. In this regard, Yarrowia lipolytica is a unique microorganism suitable for a diverse array of biotechnological applications. As a robust oleaginous yeast, it has been well studied for production of fuels and chemicals derived from fatty acids. However, thanks in part to newfound genetic tools and metabolic understanding, Y. lipolytica has been explored for high-level production of a variety of non-lipid products. This mini-review will discuss some of the recent research surrounding the ability of Y. lipolytica to support bio-based chemical production outside the realm of fatty acid metabolism including polyketides, terpenes, carotenoids, pentose phosphate-derived products, polymers, and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS (2018) Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 50:192–208

    CAS  PubMed  Google Scholar 

  • Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    CAS  Google Scholar 

  • Adrio JL (2017) Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 114:1915–1920

    CAS  PubMed  Google Scholar 

  • Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    CAS  PubMed  Google Scholar 

  • Apte M, Girme G, Bankar A, Ravikumar A, Zinjarde S (2013a) 3,4-Dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J Nanobiotechnol 11:2

    CAS  Google Scholar 

  • Apte M, Girme G, Nair R, Bankar A, Ravi Kumar A, Zinjarde S (2013b) Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater Lett 95:149–152

    CAS  Google Scholar 

  • Bailey RB, Madden KT, Trueheart J (2012) Production of carotenoids in oleaginous yeast and fungi. US Patent 8,288,149 B2

  • Balch N, Blomquist P, Doten R, Houston P, Lam E, Mcmahon J, Trueheart J, Viarouge C (2019) Production of retinol. World Patent Application 2019/057998 A1

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865

    CAS  PubMed  Google Scholar 

  • Barrera-Rivera KA, Martínez-Richa A (2017) Yarrowia lipolytica extracellular lipase Lip2 as biocatalyst for the ring-opening polymerization of ε-caprolactone. Molecules 22:1917–1927

    PubMed Central  Google Scholar 

  • Becker J, Rohles CM, Wittmann C (2018) Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 50:122–141

    CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud J-M, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    CAS  PubMed  Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131

    PubMed  Google Scholar 

  • Boer VM, Broers NJ, Lawrence AG (2014) Extracellular diterpene production. World Patent Application 2014/191580 A1

  • Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158

    Google Scholar 

  • Cao X, Lv Y-B, Chen J, Imanaka T, Wei L-J, Hua Q (2016) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol Biofuels 9:214

    PubMed  PubMed Central  Google Scholar 

  • Cao X, Wei L-J, Lin J-Y, Hua Q (2017) Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica. Bioresour Technol 245:1641–1644

    CAS  PubMed  Google Scholar 

  • Cardenas J, Da Silva NA (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metab Eng 25:194–203

    CAS  PubMed  Google Scholar 

  • Cardenas J, Da Silva NA (2016) Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 36:80–89

    CAS  PubMed  Google Scholar 

  • Carly F, Steels S, Telek S, Vandermies M, Nicaud J-M, Fickers P (2018) Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose. Bioresour Technol 247:963–969

    CAS  PubMed  Google Scholar 

  • Carreira A, Ferreira LM, Loureiro V (2001a) Production of brown tyrosine pigments by the yeast Yarrowia lipolytica. J Appl Microbiol 90:372–379

    CAS  PubMed  Google Scholar 

  • Carreira A, Ferreira LM, Loureiro V (2001b) Brown pigments produced by Yarrowia lipolytica result from extracellular accumulation of homogentisic acid. Appl Environ Microbiol 67:3463–3468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    CAS  PubMed  Google Scholar 

  • Celińska E, Nicaud J-M (2019) Filamentous fungi-like secretory pathway strayed in a yeast system: peculiarities of Yarrowia lipolytica secretory pathway underlying its extraordinary performance. Appl Microbiol Biotechnol 103:39–52

    PubMed  Google Scholar 

  • Celińska E, Kubiak P, Białas W, Dziadas M, Grajek W (2013) Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J Ind Microbiol Biotechnol 40:389–392

    PubMed  PubMed Central  Google Scholar 

  • Celińska E, Olkowicz M, Grajek W (2015) L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica—mapping molecular identities through whole-proteome quantitative mass spectrometry analysis. FEMS Yeast Res 15:fov041

    PubMed  Google Scholar 

  • Cheng B-Q, Wei L-J, Lv Y-B, Chen J, Hua Q (2019) Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition. Biotechnol Bioprocess Eng 24:500–506

    CAS  Google Scholar 

  • Chi P, Wang S, Ge X, Bilal M, Fickers P, Cheng H (2019) Efficient D-threitol production by an engineered strain of Yarrowia lipolytica overexpressing xylitol dehydrogenase gene from Scheffersomyces stipitis. Biochem Eng J 149:107259

    CAS  Google Scholar 

  • Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    CAS  PubMed  Google Scholar 

  • Christen S, Sauer U (2011) Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res 11:263–272

    CAS  PubMed  Google Scholar 

  • Czajka JJ, Nathenson JA, Benites VT, Baidoo EEK, Cheng Q, Wang Y, Tang YJ (2018) Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microb Cell Factories 17:136

    Google Scholar 

  • da Silva LV, Coelho MAZ, Amaral PFF, Fickers P (2018) A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol. Bioprocess Biosyst Eng 41:1883–1886

    PubMed  Google Scholar 

  • Daley DK, Brown KJ, Badal S (2017) Fungal Metabolites. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Boston, pp 413–421

    Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18

    Google Scholar 

  • Du H-X, Xiao W-H, Wang Y, Zhou X, Zhang Y, Liu D, Yuan Y-J (2016) Engineering Yarrowia lipolytica for campesterol overproduction. PLoS One 11:e0146773

    PubMed  PubMed Central  Google Scholar 

  • Duquesne S, Bordes F, Fudalej F, Nicaud J-M, Marty A (2012) The yeast Yarrowia lipolytica as a generic tool for molecular evolution of enzymes. In: Sandoval G (ed) Lipases and phospholipases. pp 301–312

    Google Scholar 

  • Dusseaux S, Lajus S, Borsenberger V, Verbeke J, Bordes F, Marty A, Nicaud J-M, Beopoulos A (2017) Recombinant yeast cells producing polylactic acid and uses thereof. World Patent Application 2017/108577 A1

  • Ekas H, Deaner M, Alper HS (2019) Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Biotechnol 57:1–9

    CAS  PubMed  Google Scholar 

  • Fakas S (2017) Lipid biosynthesis in yeasts: a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 17:292–302

    CAS  Google Scholar 

  • Farrell C, Houston P, Laprade L, Balch N, Mayorga M (2014) Acetyl transferases and their use for producing carotenoids. World Patent Application 2014/096992 A1

  • Fickers P, Marty A, Nicaud J-M (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644

    CAS  PubMed  Google Scholar 

  • Fukuda R (2013) Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem 77:1149–1154

    CAS  PubMed  Google Scholar 

  • Gao S, Tong Y, Zhu L, Ge M, Zhang Y, Chen D, Jiang Y, Yang S (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 41:192–201

    CAS  PubMed  Google Scholar 

  • Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9: 9–14

    PubMed  Google Scholar 

  • Garone M, Howard J, Fabrikant J (2015) A review of common tanning methods. J Clin Aesthet Dermatol 8:43–47

    PubMed  PubMed Central  Google Scholar 

  • Goldblum S, Warren CB (2014) Nootkatone as an insecticide and insect repellent. World Patent Application 2014/031790

  • Gras JL, Pellissier H, Nouguier R (1989) Synthesis of new chiral auxiliaries derived from L-threitol. J Organomet Chem 54:5675–5677

    CAS  Google Scholar 

  • Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PWM, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206

    CAS  PubMed  Google Scholar 

  • Gu Y, Xu X, Wu Y, Niu T, Liu Y, Li J, Du G, Liu L (2018) Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng 50:109–121

    CAS  PubMed  Google Scholar 

  • Guo X, Sun J, Li D, Lu W (2018) Heterologous biosynthesis of (+)-nootkatone in unconventional yeast Yarrowia lipolytica. Biochem Eng J 137:125–131

    CAS  Google Scholar 

  • Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuvéglise C, Nicaud J-M (2011) Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Appl Microbiol Biotechnol 91:1327–1340

    CAS  PubMed  Google Scholar 

  • Hamza F, Vaidya A, Apte M, Kumar AR, Zinjarde S (2017) Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina. Enzym Microb Technol 106:48–54

    CAS  Google Scholar 

  • Hernandez-Adame L, Angulo C, Delgado K, Schiavone M, Castex M, Palestino G, Betancourt-Mendiola L, Reyes-Becerril M (2019) Biosynthesis of β-D-glucan-gold nanoparticles, cytotoxicity and oxidative stress in mouse splenocytes. Int J Biol Macromol 134:379–389

    CAS  PubMed  Google Scholar 

  • Jia D, Xu S, Sun J, Zhang C, Li D, Lu W (2019) Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization. Appl Microbiol Biotechnol 103:3511–3520

    CAS  PubMed  Google Scholar 

  • Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8:1–53

    Google Scholar 

  • Jin C-C, Zhang J-L, Song H, Cao Y-X (2019) Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microb Cell Factories 18:77

    Google Scholar 

  • Kadokawa J-I, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153

    CAS  PubMed  Google Scholar 

  • Kibayashi C (1990) Natural product synthesis utilizing L-threitol derivative as a common chiral synthon. J Synth Org Chem, Japan 48:304–318

    CAS  Google Scholar 

  • Kildegaard KR, Adiego-Pérez B, Doménech Belda D, Khangura JK, Holkenbrink C, Borodina I (2017) Engineering of Yarrowia lipolytica for production of astaxanthin. Synth Syst Biotechnol 2:287–294

    PubMed  PubMed Central  Google Scholar 

  • Kubiak M, Borkowska M, Białas W, Korpys P, Celińska E (2019) Feeding strategy impacts heterologous protein production in Yarrowia lipolytica fed-batch cultures—insight into the role of osmolarity. Yeast 36:305–318

    CAS  PubMed  Google Scholar 

  • Larroude M, Celinska E, Back A, Thomas S, Nicaud J-M, Ledesma-Amaro R (2018a) A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol Bioeng 115:464–472

    CAS  PubMed  Google Scholar 

  • Larroude M, Rossignol T, Nicaud J-M, Ledesma-Amaro R (2018b) Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv 36:2150–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar Z, Liu N, Stephanopoulos G (2018) Holistic approaches in lipid production by Yarrowia lipolytica. Trends Biotechnol 36:1157–1170

    CAS  PubMed  Google Scholar 

  • Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354

    Google Scholar 

  • Ledesma-Amaro R, Nicaud J-M (2016a) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34:798–809

    CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Nicaud J-M (2016b) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50

    CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Coq A-MC-L, Nicaud J-M (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124

    CAS  PubMed  Google Scholar 

  • Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    CAS  PubMed  Google Scholar 

  • Li H, Alper HS (2016) Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnol J 11:1230–1240

    CAS  PubMed  Google Scholar 

  • Li H, Alper HS (2019) Producing biochemicals in Yarrowia lipolytica from xylose through a strain mating approach. Biotechnol J In Press. https://doi.org/10.1002/biot.201900304

  • Li D, Wu Y, Zhang C, Sun J, Zhou Z, Lu W (2019) Production of triterpene ginsenoside compound K in the non-conventional yeast Yarrowia lipolytica. J Agric Food Chem 67:2581–2588

    CAS  PubMed  Google Scholar 

  • Lian J, Mishra S, Zhao H (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng 50:85–108

    CAS  PubMed  Google Scholar 

  • Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    CAS  PubMed  Google Scholar 

  • Liu L, Redden H, Alper HS (2013) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24:1023–1030

    CAS  PubMed  Google Scholar 

  • Liu D, Liu H, Qi H, Guo X-J, Jia B, Zhang J-L, Yuan Y-J (2019a) Constructing yeast chimeric pathways to boost lipophilic terpene synthesis. ACS Synth Biol 8:724–733

    PubMed  Google Scholar 

  • Liu H, Marsafari M, Wang F, Deng L, Xu P (2019b) Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. bioRxiv. https://doi.org/10.1101/614131

  • Lv Y, Koffas M, Zhou J, Xu P (2019) Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. bioRxiv. https://doi.org/10.1101/614099

  • Markham KA, Alper HS (2018) Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol 36:1085–1095

    CAS  PubMed  Google Scholar 

  • Markham KA, Palmer CM, Chwatko M, Wagner JM, Murray C, Vazquez S, Swaminathan A, Chakravarty I, Lynd NA, Alper HS (2018) Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci U S A 115:2096–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maschio L, Parnell AE, Lees NR, Willis CL, Schaffitzel C, Stach JEM, Race PR (2019) Cloning, expression, and purification of intact polyketide synthase modules. In: Schmidt-Dannert C, Quin MB (eds) . Academic Press, Methods in enzymology, pp 63–82

    Google Scholar 

  • Michely S, Gaillardin C, Nicaud J-M, Neuvéglise C (2013) Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One 8:e63356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirończuk AM, Furgała J, Rakicka M, Rymowicz W (2014) Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol 41:57–64

    PubMed  Google Scholar 

  • Mirończuk AM, Biegalska A, Dobrowolski A (2017) Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnol Biofuels 10:77

    PubMed  PubMed Central  Google Scholar 

  • Nambou K, Jian X, Zhang X, Wei L, Lou J, Madzak C, Hua Q (2015) Flux balance analysis inspired bioprocess upgrading for lycopene production by a metabolically engineered strain of Yarrowia lipolytica. Metabolites 5:794–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niehus X, Crutz-Le Coq A-M, Sandoval G, Nicaud J-M, Ledesma-Amaro R (2018) Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuels 11:11

    PubMed  PubMed Central  Google Scholar 

  • Ong KL, Li C, Li X, Zhang Y, Xu J, Lin CSK (2019) Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochem Eng J 148:108–115

    CAS  Google Scholar 

  • Palmer CM, Alper HS (2019) Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS-derived polyketides. Biotechnol J 14:e1700463

    PubMed  Google Scholar 

  • Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Chevalot I, Aggelis G (2017) Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides: waste glycerol fermentation by yeasts. Eur J Lipid Sci Technol 119:1600507

    Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK, (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and Surfaces B: Biointerfaces 74:309–316

    CAS  PubMed  Google Scholar 

  • Pontrelli S, Chiu T-Y, Lan EI, Chen FY-H, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46

    CAS  PubMed  Google Scholar 

  • Rapi Z, Nemcsok T, Pálvölgyi Á, Keglevich G, Grün A, Bakó P (2017) Synthesis of L-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions. Chirality 29:257–272

    CAS  PubMed  Google Scholar 

  • Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    CAS  Google Scholar 

  • Reed KB, Alper HS (2018) Expanding beyond canonical metabolism: interfacing alternative elements, synthetic biology, and metabolic engineering. Synth Syst Biotechnol 3:20–33

    PubMed  Google Scholar 

  • Rigouin C, Lajus S, Ocando C, Borsenberger V, Nicaud JM, Marty A, Avérous L, Bordes F (2019) Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microb Cell Factories 18:99

    Google Scholar 

  • Robinson JA (1991) Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 332:107–114

    CAS  Google Scholar 

  • Royer J (2016) Methods for producing abienol. World Patent Application 2016/094178 A1

  • Royer J, Houston PL (2016) Microbial production of terpenoids. World Patent Application 2016/172282 A1

  • Rumbold K, van Buijsen HJJ, Gray VM, van Groenestijn JW, Overkamp KM, Slomp RS, van der Werf MJ, Punt PJ (2010) Microbial renewable feedstock utilization: a substrate-oriented approach. Bioeng Bugs 1:359–366

    PubMed  PubMed Central  Google Scholar 

  • Rywińska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W (2013) Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48:148–166

    Google Scholar 

  • Sabirova JS, Haddouche R, Van Bogaert IN, Mulaa F, Verstraete W, Timmis KN, Schmidt-Dannert C, Nicaud JM, Soetaert W (2011) The “LipoYeasts” project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 4:47–54

    CAS  PubMed  Google Scholar 

  • Saunders LP, Bowman MJ, Mertens JA, Da Silva NA, Hector RE (2015) Triacetic acid lactone production in industrial Saccharomyces yeast strains. J Ind Microbiol Biotechnol 42:711–721

    CAS  PubMed  Google Scholar 

  • Schmidt H (2001) Nanoparticles by chemical synthesis, processing to materials and innovative applications. Appl Organomet Chem 15:331–343

    CAS  Google Scholar 

  • Sharpe PL, Ye RW, Zhu QQ (2014) Carotenoid production in a recombinant oleaginous yeast. US Patent 8,846,374 B2

  • Sheng J, Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554

    PubMed  PubMed Central  Google Scholar 

  • Shi T-Q, Huang H, Kerkhoven EJ, Ji X-J (2018) Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Appl Microbiol Biotechnol 102:9541–9548. https://doi.org/10.1007/s00253-018-9366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnuolo M, Shabbir Hussain M, Gambill L, Blenner M (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol 9:1077

    PubMed  PubMed Central  Google Scholar 

  • Sun J, Zhang C, Nan W, Li D, Ke D, Lu W (2019) Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem Eng Sci 196:82–90

    CAS  Google Scholar 

  • Tang S-Y, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135:10099–10103

    CAS  PubMed  Google Scholar 

  • Tappin MRR, Knopp FM, Cardoso IC, Santos RT, Drummond BS, Siani AC, Bon EPS, Ferrara MA (2017) Synthesis of the prospective anticancer molecule perillic acid from orange essential oil by the yeast Yarrowia lipolytica. GSC 07:172–184

    CAS  Google Scholar 

  • Tomaszewska L, Rywińska A, Gładkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Zhou J, Zhang L, Xu P (2019) Engineering oleaginous yeast Yarrowia lipolytica for violacein production: extraction, quantitative measurement and culture optimization. BioRxiv. https://doi.org/10.1101/687012

  • Vandermies M, Fickers P (2019) Bioreactor-scale strategies for the production of recombinant protein in the yeast Yarrowia lipolytica. Microorganisms 7:40–63

    PubMed Central  Google Scholar 

  • Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136

    CAS  PubMed  Google Scholar 

  • Wakimoto T, Morita H, Abe I (2012) Engineering of plant type III polyketide synthases. In: Hopwood DA (ed) Methods in enzymology. Academic Press, pp 337–358

  • Wierckx N, Prieto MA, Pomposiello P, de Lorenzo V, O’Connor K, Blank LM (2015) Plastic waste as a novel substrate for industrial biotechnology. Microb Biotechnol 8:900–903

    PubMed  PubMed Central  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990

    CAS  PubMed  Google Scholar 

  • Wong L, Engel J, Jin E, Holdridge B, Xu P (2017) YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 5:68–77

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xu S, Gao X, Li M, Li D, Lu W (2019) Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Microb Cell Factories 18:83

    Google Scholar 

  • Xie D (2017) Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: a review. Front Bioeng Biotechnol 5:1–17

    CAS  Google Scholar 

  • Yan J, Han B, Gui X, Wang G, Xu L, Yan Y, Madzak C, Pan D, Wang Y, Zha G, Jiao L (2018) Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Sci Rep 8:758

    PubMed  PubMed Central  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Nambou K, Wei L, Hua Q (2016) Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresour Technol 216:1040–1048

    CAS  PubMed  Google Scholar 

  • Ye RW, Sharpe PL, Zhu Q (2012) Bioengineering of oleaginous yeast Yarrowia lipolytica for lycopene production. In: Barredo J-L (ed) Microbial carotenoids from fungi: methods and protocols. Humana Press, Totowa, pp 153–159

    Google Scholar 

  • Yu J, Landberg J, Shavarebi F, Bilanchone V, Okerlund A, Wanninayake U, Zhao L, Kraus G, Sandmeyer S (2018) Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnol Bioeng 115:2383–2388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Tang Y (2009) In vitro analysis of type II polyketide synthase. In: Abelson JN, Simon MI (eds) Methods in enzymology. Academic Press, San Diego, pp 367–393

  • Zhang Y, Wang Y, Yao M, Liu H, Zhou X, Xiao W, Yuan Y (2017) Improved campesterol production in engineered Yarrowia lipolytica strains. Biotechnol Lett 39:1033–1039

    CAS  PubMed  Google Scholar 

  • Zhang X-K, Nie M-Y, Chen J, Wei L-J, Hua Q (2019) Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J Biotechnol 289:46–54

    CAS  PubMed  Google Scholar 

  • Zvyagilskaya R, Andreishcheva E, Soares MIM, Khozin I, Berhe A, Persson BL (2001) Isolation and characterization of a novel leaf-inhabiting osmo-, salt-, and alkali-tolerant Yarrowia lipolytica yeast strain. J Basic Microbiol 41:289–303

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded through the Camille and Henry Dreyfus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal S. Alper.

Ethics declarations

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, K.K., Alper, H.S. Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 103, 9251–9262 (2019). https://doi.org/10.1007/s00253-019-10200-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10200-x

Keywords

Navigation