Skip to main content

Advertisement

Log in

A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The morphological plasticity of Candida albicans is a virulence determinant as the hyphal form has significant roles in the infection process. Recently, phosphoregulation of proteins through phosphorylation and dephosphorylation events has gained importance in studying the regulation of pathogenicity at the molecular level. To understand the importance of phosphorylation in hyphal morphogenesis, global analysis of the phosphoproteome was performed after hyphal induction with elevated temperature, serum, and N-acetyl-glucosamine (GlcNAc) treatments. The study identified 60, 20, and 53 phosphoproteins unique to elevated temperature-, serum-, and GlcNAc-treated conditions, respectively. Distribution of unique phosphorylation sites sorted by the modified amino acids revealed that predominant phosphorylation occurs in serine, followed by threonine and tyrosine residues in all the datasets. However, the frequency distribution of phosphorylation sites in the proteins varied with treatment conditions. Further, interaction network-based functional annotation of protein kinases of C. albicans as well as identified phosphoproteins was performed, which demonstrated the interaction of kinases with phosphoproteins during filamentous growth. Altogether, the present findings will serve as a base for further functional studies in the aspects of protein kinase-target protein interaction in effectuating phosphorylation of target proteins, and delineating the downstream signaling networks linked to virulence characteristics of C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG (2012) Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics 11:M111.009555

    Article  Google Scholar 

  • Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim WA, Shokat KM, Burlingame AL, Krogan NJ (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol l7:e1000134

    Article  Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930

    Article  CAS  Google Scholar 

  • Bishop A, Lane R, Beniston R, Chapa-Y-Lazo B, Smythe C, Sudbery P (2010) Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 29:2930–2942

    Article  CAS  Google Scholar 

  • Buffo J, Herman N, Soll DR (1985) A characterization of pH regulated dimorphism in Candida albicans. Mycopathol 85:21–30

    Article  Google Scholar 

  • Caballero-Lima D, Sudbery PE (2014) In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell 25:1097–1110

    Article  Google Scholar 

  • Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H (2006) The Flo8 transcription factor is essential for hyphal development and virulence Candida albicans. Mol Biol Cell 17:295–307

    Article  CAS  Google Scholar 

  • Carlisle PL, Banerjee M, Lazzell A, Monteagudo C, Lopez-Ribot JL, Kadosh D (2009) Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A 106:599–604

    Article  CAS  Google Scholar 

  • Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruere C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248–271

    Article  CAS  Google Scholar 

  • Davanture M, Dumur J, Bataille-Simoneau N, Campion C, Valot B, Zivy M, Simoneau P, Fillinger S (2014) Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures. Proteomics 14:1639–1645

    Article  CAS  Google Scholar 

  • Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA (2017) The ProteomeXchange Consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 54(D1):D1100–D1106

    Article  Google Scholar 

  • Diezmann S, Cox CJ, Schonian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635

    Article  CAS  Google Scholar 

  • Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244

    Article  CAS  Google Scholar 

  • Ernst JF (2000) Transcription factors in Candida albicans—environmental control of morphogenesis. Microbiol 146:1763–1774

    Article  CAS  Google Scholar 

  • Fidel PL Jr, Vazquez JA, Sobel JD (1999) Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12:80–96

    Article  Google Scholar 

  • Giansanti P, Aye TT, van den Toorn H, Peng M, van Breukelen B, Heck AJ (2015) An augmented multiple-protease-based human phosphopeptide atlas. Cell Rep 11:1834–1843

    Article  CAS  Google Scholar 

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  CAS  Google Scholar 

  • Gow NA, Van de Veerdonk FL, Brown AJ, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122

    Article  CAS  Google Scholar 

  • Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE (2015) Cell cycle-independent phosphor regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 11:e1004630

    Article  Google Scholar 

  • Grimsrud PA, Carson JJ, Hebert AS, Hubler SL, Niemi NM, Bailey DJ, Jochem A, Stapleton DS, Keller MP, Westphall MS, Yandell BS, Attie AD, Coon JJ, Pagliarini DJ (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16:672–683

    Article  CAS  Google Scholar 

  • Gutiérrez J, Morales P, González MA, Quindós G (2002) Candida dubliniensis, a new fungal pathogen. J Basic Microbiol 42:207–227

    Article  Google Scholar 

  • Hohenester UM, Ludwig K, Krieglstein J, Konig S (2010) Stepchild phosphohistidine: acid-labile phosphorylation becomes accessible by functional proteomics. Anal Bioanal Chem 397:3209–3212

    Article  CAS  Google Scholar 

  • Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26:676–487

    Article  CAS  Google Scholar 

  • Johnson SA, Hunter T (2004) Phosphoproteomics finds its timing. Nat Biotechnol 22:1093–1094

    Article  CAS  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Pesseat GNS, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Siew-Yit Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  Google Scholar 

  • Kanshin E, Michnick SW, Thibault P (2013) Displacement of N/Q-rich peptides on TiO2 beads enhances the depth and coverage of yeast phosphoproteome analyses. J Proteome Res 12:2905–2913

    Article  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Hors-man D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  Google Scholar 

  • Kumamoto CA, Vinces MD (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7:1546–1554

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lane S, Birse C, Zhou S, Matson R, Liu HP (2001a) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996

    Article  CAS  Google Scholar 

  • Lane S, Zhou S, Pan T, Dai Q, Liu H (2001b) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via Tec1. Mol Cell Biol 21:6418–6428

    Article  CAS  Google Scholar 

  • Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schröppel L (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687

    Article  CAS  Google Scholar 

  • Lee KH, Jun S, Hur HS, Ryu JJ, Kim J (2005) Candida albicans protein analysis during hyphal differentiation using an integrative HA-tagging method. Biochem Biophys Res Commun 337:784–790

    Article  CAS  Google Scholar 

  • Lenardon MD, Milne SA, Mora-Montes HM, Kaffarnik FAR, Peck SC, Brown AJP, Munro CA, Gow NAR (2010) Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. J Cell Sci 123:2199–2206

    Article  CAS  Google Scholar 

  • Liñeiro E, Chiva C, Cantoral JM, Sabido E, Fernández-Acero FJ (2016) Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors. J Proteomics 139:84–94

    Article  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  Google Scholar 

  • Lu H, Yao XW, Whiteway M, Xiong J, Liao ZB, Jiang YY, Cao YY (2015) Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans. Fungal Genet Biol 80:31–42

    Article  CAS  Google Scholar 

  • Mardon D, Balish E, Phillips AW (1969) Control of dimorphism in a biochemical variant of Candida albicans. J Bacteriol 100:701–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ, Naglik JR (2010) A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225–235

    Article  CAS  Google Scholar 

  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Article  CAS  Google Scholar 

  • Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycol 45:321–346

    Article  Google Scholar 

  • Pitarch A, Díez-Orejas R, Molero G, Pardo M, Sánchez M, Gil C, Nombela C (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1:550–559

    Article  CAS  Google Scholar 

  • Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E (2012) Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 12:1002–1005

    Article  CAS  Google Scholar 

  • Ramsubramaniam N, Harris SD, Marten MR (2014) The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion. Proteomics 14:2454–2459

    Article  CAS  Google Scholar 

  • Seet BT, Dikic I, Zhou M, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483

    Article  CAS  Google Scholar 

  • Selvan LD, Renuse S, Kaviyil JE, Sharma J, Pinto SM, Yelamanchi SD, Puttamallesh VN, Ravikumar R, Pandey A, Prasad TS, Harsha HC (2014) Phosphoproteome of Cryptococcus neoformans. J Proteome 97:287–295

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  • Simonneti N, Stripolli V, Cassone EA (1974) Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 250:344–346

    Article  Google Scholar 

  • Sinha I, Wang YM, Philp R, Li CR, Yap WH, Wang Y (2007) Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev Cell 13:421–432

    Article  CAS  Google Scholar 

  • Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G (2017) The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:592–596

    Article  Google Scholar 

  • Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11:1070–1083

    Article  CAS  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    Article  CAS  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  Google Scholar 

  • Taschdjian CL, Burchill JJ, Kozinn PJ (1960) Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA J Dis Child 99:212

    CAS  PubMed  Google Scholar 

  • Tian M, Chen X, Xiong Q, Xiong J, Xiao C, Ge F, Yang F, Miao W (2014) Phosphoproteomic analysis of protein phosphorylation networks in Tetrahymena thermophila, a model single-celled organism. Mol Cell Proteomics 13:503–519

    Article  CAS  Google Scholar 

  • Uhl MA, Biery M, Craig N, Johnson AD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 22:2668–2678

    Article  CAS  Google Scholar 

  • Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  Google Scholar 

  • Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and related tools. Nucleic Acids Res 44:447–456

    Article  Google Scholar 

  • Voorrips RE (2002) Map Chart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  Google Scholar 

  • Wang Y (2016) Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans. J Microbiol 54:170–177

    Article  CAS  Google Scholar 

  • Willger SD, Liu Z, Olarte RA, Adamo ME, Stajich JE, Myers LC, Kettenbach AN, Hogan DA (2015) Analysis of the Candida albicans phosphoproteome. Eukaryote Cell 14:474–485

    Article  CAS  Google Scholar 

  • Wilson-Grady JT, Villen J, Gygi SP (2008) Phosphoproteome analysis of fission yeast. J Proteome Res 7:1088–1097

    Article  CAS  Google Scholar 

  • Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JHD, Yang F, Glass NL (2014) The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation. Fungal Genet Biol 72:21–33

    Article  CAS  Google Scholar 

  • Xu YF, Zhao X, Glass DS, Absalan F, Perlman DH, Broach JR, Rabinowitz JD (2012) Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation. Mol Cell 48:152–162

    Google Scholar 

  • Zhao Z, Jin Q, Xu J-R, Liu H (2014) Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases. PLoS One 9:e89813

    Article  Google Scholar 

  • Zheng XD, Lee RT, Wang YM, Lin QS, Wang Y (2007) Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J 26:3760–3769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by grants from Council of Scientific and Industrial Research, Department of Biotechnology and the Core Grant of National Institute of Plant Genome Research, New Delhi, India. P.G. and M.I. acknowledge Council of Scientific and Industrial Research, India, for the Senior Research Fellowship and Senior Research Associateship, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.D. conceived and supervised the complete study. P.G., M.I., and A.D. planned the experiments. P.G. performed all the experiments. P.G., M.I., A.D., and A.N. analyzed the results and wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Asis Datta.

Ethics declarations

The study is financially supported by Council of Scientific and Industrial Research [Grant Number 38(1408/15/Emr-II)], India, Department of Biotechnology (Grant Number BT/101/CFIB/12/II/01), India, and the Core Grant of National Institute of Plant Genome Research, New Delhi, India. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 2491 kb)

ESM 2

(XLSX 232 kb)

ESM 3

(XLSX 9216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, P., Irfan, M., Narula, A. et al. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis. Appl Microbiol Biotechnol 102, 9731–9743 (2018). https://doi.org/10.1007/s00253-018-9303-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9303-z

Keywords

Navigation