Skip to main content

Advertisement

Log in

Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Branston SD, Wright J, Keshavarz-Moore E (2015) A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnol Bioeng 112(8):1714–1719. doi:10.1002/bit.25571

    Article  CAS  PubMed  Google Scholar 

  • Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368. doi:10.1111/j.1600-065X.2008.00604.x

    Article  CAS  PubMed  Google Scholar 

  • Chertova E, Bergamaschi C, Chertov O, Sowder R, Bear J, Roser JD, Beach RK, Lifson JD, Felber BK, Pavlakis GN (2013) Characterization and favorable in vivo properties of heterodimeric soluble IL-15.IL-15Ralpha cytokine compared to IL-15 monomer. J Biol Chem 288(25):18093–18103. doi:10.1074/jbc.M113.461756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce M, Orengo AM, Azzarone B, Ferrini S (2012) Immunotherapeutic applications of IL-15. Immunotherapy 4(9):957–969. doi:10.2217/imt.12.92

    Article  CAS  PubMed  Google Scholar 

  • Gagnon P, Toh P, Lee J (2014) High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol. J Chromatogr A 1324:171–180. doi:10.1016/j.chroma.2013.11.039

    Article  CAS  PubMed  Google Scholar 

  • Giese G, Myrold A, Gorrell J, Persson J (2013) Purification of antibodies by precipitating impurities using polyethylene glycol to enable a two chromatography step process. J Chromatogr B Anal Technol Biomed Life Sci 938:14–21. doi:10.1016/j.jchromb.2013.08.029

    Article  CAS  Google Scholar 

  • Huang XQ, Hamilton MJ, Li CL, Schmidt C, Ellem KA (2006) An extraordinarily high level of IL-15 expression by a cell line transduced with a modified BMGneo vector displays hypoxic upregulation. Mol Biotechnol 33(1):49–56. doi:10.1385/MB:33:1:49

    CAS  PubMed  Google Scholar 

  • Jakobisiak M, Golab J, Lasek W (2011) Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev 22(2):99–108. doi:10.1016/j.cytogfr.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Xie Y, Burnette A, Roach J, Giardina SL, Hecht TT, Creekmore SP, Mitra G, Zhu J (2013) Purification of clinical-grade disulfide stabilized antibody fragment variable—Pseudomonas exotoxin conjugate (dsFv-PE38) expressed in Escherichia coli. Appl Microbiol Biotechnol 97(2):621–632. doi:10.1007/s00253-012-4319-2

    Article  CAS  PubMed  Google Scholar 

  • Knevelman C, Davies J, Allen L, Titchener-Hooker NJ (2010) High-throughput screening techniques for rapid PEG-based precipitation of IgG4 mAb from clarified cell culture supernatant. Biotechnol Prog 26(3):697–705. doi:10.1002/btpr.357

    Article  CAS  PubMed  Google Scholar 

  • Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi J (2015) Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-tag). Biotechnol Prog 31(6):1563–1570. doi:10.1002/btpr.2169

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang Y, Xu A, Li S, Jin S, Wu D (2011) Large-scale production, purification and bioactivity assay of recombinant human interleukin-6 in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 11(2):160–167. doi:10.1111/j.1567-1364.2010.00701.x

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhu S, Qian L, Xiang D, Zhang W, Nie A, Gao J, Wu M, Lu B, Yu Y, Han W, Moldenhauer A (2012) Activated expression of the chemokine Mig after chemotherapy contributes to chemotherapy-induced bone marrow suppression and lethal toxicity. Blood 119(21):4868–4877. doi:10.1182/blood-2011-07-367581

    Article  CAS  PubMed  Google Scholar 

  • Nabekura T, Lanier LL (2016) Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection. J Exp Med 213(12):2745–2758. doi:10.1084/jem.20160726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nellis DF, Michiel DF, Jiang MS, Esposito D, Davis R, Jiang H, Korrell A, Knapp GC, Lucernoni LE, Nelson RE, Pritt EM, Procter LV, Rogers M, Sumpter TL, Vyas VV, Waybright TJ, Yang X, Zheng AM, Yovandich JL, Gilly JA, Mitra G, Zhu J (2012) Characterization of recombinant human IL-15 deamidation and its practical elimination through substitution of asparagine 77. Pharm Res 29(3):722–738. doi:10.1007/s11095-011-0597-0

    Article  CAS  PubMed  Google Scholar 

  • Oelmeier SA, Ladd-Effio C, Hubbuch J (2013) Alternative separation steps for monoclonal antibody purification: combination of centrifugal partitioning chromatography and precipitation. J Chromatogr A 1319:118–126. doi:10.1016/j.chroma.2013.10.043

    Article  CAS  PubMed  Google Scholar 

  • Ouellette T, Destrau S, Zhu J, Roach JM, Coffman JD, Hecht T, Lynch JE, Giardina SL (2003) Production and purification of refolded recombinant human IL-7 from inclusion bodies. Protein Expr Purif 30(2):156–166

    Article  CAS  PubMed  Google Scholar 

  • Palmer I, Wingfield PT (2012) Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. Current protocols in protein science Chapter 6:Unit6 3. doi:10.1002/0471140864.ps0603s70

  • Qi X, Sun Y, Xiong S (2015) A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form. Microb Cell Factories 14:24. doi:10.1186/s12934-015-0208-6

    Article  Google Scholar 

  • Qian L, Zhu S, Shen J, Han X, Gao J, Wu M, Yu Y, Lu H, Han W (2012) Expression and purification of recombinant human Mig in Escherichia coli and its comparison with murine Mig. Protein Expr Purif 82(1):205–211. doi:10.1016/j.pep.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  • Rahmen N, Fulton A, Ihling N, Magni M, Jaeger KE, Buchs J (2015) Exchange of single amino acids at different positions of a recombinant protein affects metabolic burden in Escherichia coli. Microb Cell Factories 14:10. doi:10.1186/s12934-015-0191-y

    Article  Google Scholar 

  • Richer MJ, Pewe LL, Hancox LS, Hartwig SM, Varga SM, Harty JT (2015) Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest 125(9):3477–3490. doi:10.1172/JCI81261

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenkel JM, Fraser KA, Casey KA, Beura LK, Pauken KE, Vezys V, Masopust D (2016) IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells. J Immunol 196(9):3920–3926. doi:10.4049/jimmunol.1502337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim SL, He T, Tscheliessnig A, Mueller M, Tan RB, Jungbauer A (2012) Protein precipitation by polyethylene glycol: a generalized model based on hydrodynamic radius. J Biotechnol 157(2):315–319. doi:10.1016/j.jbiotec.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  • Soman G, Yang X, Jiang H, Giardina S, Vyas V, Mitra G, Yovandich J, Creekmore SP, Waldmann TA, Quinones O, Alvord WG (2009) MTS dye based colorimetric CTLL-2 cell proliferation assay for product release and stability monitoring of interleukin-15: assay qualification, standardization and statistical analysis. J Immunol Methods 348(1–2):83–94. doi:10.1016/j.jim.2009.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Lai Y, Li H, Nie T, Kuang Y, Tang X, Li K, Dunbar PR, Xu A, Li P, Wu D (2016) High level expression and purification of active recombinant human interleukin-15 in Pichia pastoris. J Immunol Methods 428:50–57. doi:10.1016/j.jim.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28(1):1–8. doi:10.1016/s1046-5928(02)00641-1

    Article  CAS  PubMed  Google Scholar 

  • Van den Bergh JM, Lion E, Van Tendeloo VF, Smits EL (2017) IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: the upswing of IL-15 transpresentation. Pharmacol Ther 170:73–79. doi:10.1016/j.pharmthera.2016.10.012

  • Vyas VV, Esposito D, Sumpter TL, Broadt TL, Hartley J, Knapp GC, Cheng W, Jiang MS, Roach JM, Yang X, Giardina SL, Mitra G, Yovandich JL, Creekmore SP, Waldmann TA, Zhu J (2012) Clinical manufacturing of recombinant human interleukin 15. I. Production cell line development and protein expression in E. coli with stop codon optimization. Biotechnol Prog 28(2):497–507. doi:10.1002/btpr.746

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rahman D, Mistry M, Lehner T (2016) The effect of cellular stress on T and B cell memory pathways in immunized and unimmunized BALB/c mice. J Biol Chem 291(39):20707–20717. doi:10.1074/jbc.M116.746057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto E, Yamaguchi S, Nagamune T (2017) Protein refolding is improved by adding nonionic polyethylene glycol monooleyl ethers with various polyethylene glycol lengths. Biotechnol J. doi:10.1002/biot.201600689

    Google Scholar 

  • Yang Z, Zhang L, Zhang Y, Zhang T, Feng Y, Lu X, Lan W, Wang J, Wu H, Cao C, Wang X (2011) Highly efficient production of soluble proteins from insoluble inclusion bodies by a two-step-denaturing and refolding method. PLoS One 6(7):e22981. doi:10.1371/journal.pone.0022981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Kang L, Gao S, Gao X, Xin W, Wang J (2012) PEG precipitation coupled with chromatography is a new and sufficient method for the purification of botulinum neurotoxin type B [corrected]. PLoS One 7(6):e39670. doi:10.1371/journal.pone.0039670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170. doi:10.1016/j.biotechadv.2011.08.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 81273576 to Lu H., 81473127 to Zhu J.), the Science and Technology Commission of Shanghai Municipality (No. 15431907000 and 15DZ0503700 to Zhu J.), and the Medical and Engineering Cross Research Foundation of Shanghai Jiao Tong University (No. YM2013MS54 and YG2016QN27 to Lu H.). We would also like to thank the Biological Resources Branch (BRB) Preclinical Repository at the National Cancer Institute (Frederick, MD, USA), for supplying rhIL-15 reference.

Author information

Authors and Affiliations

Authors

Contributions

Huanhuan Chen, Ninghuan Li, Siwei Shi, Chencen Zhu, Han Luo, Lei Zhang, Junsheng Chen, Menglin Zhao, Lei Feng, and Huili Lu designed and performed the experiments. Yueqing Xie, Hua Jiang, Xiaoyi Yang, Cedric Cagliero, Huili Lu, and Jianwei Zhu analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Huili Lu or Jianwei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants. All animal studies were evaluated and approved by the Animal Care and Use Committee of Shanghai Jiao Tong University, prior to the commencement of any experiments.

Electronic supplementary material

ESM 1

(PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, N., Xie, Y. et al. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli . Appl Microbiol Biotechnol 101, 5267–5278 (2017). https://doi.org/10.1007/s00253-017-8265-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8265-x

Keywords

Navigation