Skip to main content
Log in

Purification of clinical-grade disulfide stabilized antibody fragment variable—Pseudomonas exotoxin conjugate (dsFv-PE38) expressed in Escherichia coli

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Immunotoxins are rationally designed cancer targeting and killing agents. Disulfide stabilized antibody Fv portion—toxin conjugates (dsFv-toxin) are third generation immunotoxins containing only the antibody fragment variable portions and a toxin fused to the VH or VL. Pseudomonas exotoxin fragment (PE-38) is a commonly used toxin in immunotoxin clinical trials. dsFv-toxin purification was previously published, but the recovery was not satisfactory. This report describes the development of a cGMP production process of the dsFv-toxin that incorporated a novel purification method. The method has been successfully applied to the clinical manufacturing of two dsFv-PE38 immunotoxins, MR1-1 targeting EGFRvIII and HA22 targeting CD22. The two subunits, VL and VH PE-38 were expressed separately in Escherichia coli using recombinant technology. Following cell lysis, inclusion bodies were isolated from the biomass harvested from fermentation in animal source component-free media. The dsFv-toxin was formed after denaturation and refolding, and subsequently purified to homogeneity through ammonium sulfate precipitation, hydrophobic interaction and ion-exchange chromatography steps. It was shown, in a direct comparison experiment using MR1-1 as model protein, that the recovery from the new purification method was improved three times over that from previously published method. The improved recovery was also demonstrated during the clinical production of two dsFv-PE38 immunotoxins—MR1-1 and HA22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archer GE, Sampson JH, Lorimer IAJ, McLendon RE, Kuan CT, Friedman AH, Friedman HS, Pastan IH, Bigner DD (1999) Regional treatment of epidermal growth factor receptor vIII-expressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin Cancer Res 5:2646–2652

    CAS  Google Scholar 

  • Bang S, Nagata S, Onda M, Kreitman RJ, Pastan I (2005) HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity. Clin Cancer Res 11:1545–1550

    Article  CAS  Google Scholar 

  • Batra JK, FitzGerald D, Gately M, Chaudhary VK, Pastan I (1990) Anti-Tac(Fv)-PE40, a single chain antibody Pseudomonas fusion protein directed at interleukin 2 receptor bearing cells. J Biol Chem 265:15198–15202

    CAS  Google Scholar 

  • Beers R, Chowdhury C, Bigner D, Pastan I (2000) Immunotoxin with increased activity against epidermal growth factor receptor vIII-expressing cells produced by antibody phage display. Clin Cancer Res 6:2835–2843

    CAS  Google Scholar 

  • Bird RE, Walker BW (1991) Single chain antibody variable regions. Trends Biotechnol 9:132–137

    Article  CAS  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Withlow M (1988) Single-chain antigen binding proteins. Science 242:423–426

    Article  CAS  Google Scholar 

  • Bjorn MJ, Groetsema G, Scalapino L (1986) Antibody—Pseudomonas exotoxin A conjugates cytotoxic to human breast cancer cells in vitro. Cancer Res 46:3262–3267

    CAS  Google Scholar 

  • Brinkmann U, Pai LH, FitzGerald DJ, Willingham M, Pastan I (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A 88:8616–8620

    Article  CAS  Google Scholar 

  • Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analyt Biochem 205:263–270

    Article  CAS  Google Scholar 

  • Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339:394–397

    Article  CAS  Google Scholar 

  • FitzGerald DJ, Willingham MC, Pastan I (1988) Pseudomonas exotoxin—immunotoxins. Cancer Treatment Res 37:161–173

    Article  CAS  Google Scholar 

  • FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I (2011) Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 71:6300–6309

    Article  CAS  Google Scholar 

  • Frankel AE (2002) Increased sophistication of immunotoxins. Clin Cancer Res 8:942–944

    CAS  Google Scholar 

  • Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–334

    CAS  Google Scholar 

  • Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  CAS  Google Scholar 

  • Humphrey PA, Wong AJ, Vogelstein B, Friedman HS, Werner MH, Bigner DD, Bigner SH (1988) Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 48:2231–2238

    CAS  Google Scholar 

  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri EH, Crea R, Oppermann H (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-dogoxigenin single-chain Fv analogue produced in Escherichia coli. Proc Nat Acad Sci (Wash) 85:5879–5883

    Article  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Nat Acad Sci U S A 72:2284–2288

    Article  CAS  Google Scholar 

  • Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. The AAPS Journal 8 (3) Article 63:E532–E551. doi:10.1208/aapsj080363

  • Kreitman RJ (2009) Recombinant immunotoxins for the treatment of chemoresistant hematologic malignancies. Cur Pharm Des 15:2652–2664

    Article  CAS  Google Scholar 

  • Kreitman RJ (2012) A phase 1/II study of CAT-8015 in adult relapsed or refractory B-cell non Hodgkin lymphoma and chronic lymphocytic leukemia. NCI-10_C-0067, NCT01086644. http://bethesdatrials.cancer.gov/clinical-research/search_detail.aspx?ProtocolID=NCI-10-C-0067 (2012) retrieved May 17, 2012

  • Kreitman RJ, Wang QC, FitzGerald DP, Pastan I (1999) Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by cynomolgus monkeys. Int J Cancer 81:148–155

    Article  CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, Waldmann TA, Pastan I (2000) Phase I trial of recombinant immnuotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18:1622–1636

    CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, FitzGerald DJ, Pastan I (2001) Efficiency of the anti-CD22 recombinant immnuotoxin BL22 chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247

    Article  CAS  Google Scholar 

  • Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I (2009) Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res 15:5274–5279

    Article  CAS  Google Scholar 

  • Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I (2012) Phase I trial of anti-CD22 recombinant immunotoxin Moxetumomab Pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. doi:10.1200/JCO.2011.38.1756, epublish ahead of print

  • Kuan CT, Pastan I (1996) Improved antitumor activity of a recombinant anti-Lewis(y) immunotoxin not requiring proteolytic activation. Proc Natl Acad Sci U S A 93:974–978

    Article  CAS  Google Scholar 

  • Kuan CT, Reist CJ, Foulon CF, Lorimer IAJ, Archer G, Pegram CN, Pastan I, Zalutsky MR, Bigner DD (1999) 125I-labled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin Cancer Res 5:1539–1549

    CAS  Google Scholar 

  • Kuan CT, Wikstrand CJ, Archer G, Beers R, Pastans T, Zalutsky M, Bigner DD (2000) Increased binding affinity enhances targeting of glioma zenografts by EGFRvIII-specific scFv. Int J Cancer 88:962–969

    Article  CAS  Google Scholar 

  • Lorimer IAJ, Wikstrand CJ, Batra SK, Bigner DO, Pastan I (1995) Immunotoxins that target an oncogenic mutant epidermal growth factor receptor expressed in human tumors. Clin Cancer Res 1:859–864

    CAS  Google Scholar 

  • Lorimer IJ, Keppler-Hafkemeyer A, Beers RA, Pegram CN, Bigner DD, Pastan I (1996) Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc Natl Acad Sci U S A 93:14815–14820

    Article  CAS  Google Scholar 

  • Mansfield E, Chiron MF, Amlot P, Pastan I, FitzGerald DJ (1997a) Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells. Biochem Soc Trans 25:709–714

    CAS  Google Scholar 

  • Mansfield E, Amlot P, Pastan I, FitzGerald DJ (1997b) Recombinant RFB4 immunotoxin exhibit potent cytotoxic activity for CD-22-bearing cells and tumors. Blood 90:2020–2026

    CAS  Google Scholar 

  • Near RI, Ng SC, Mudgett-Hunter M, Hudson NW, Margolies MN, Seidman JG, Haber E, Jacobson MA (1990) Heavy and light chain contributions to antigen binding in an anti-digoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Mol Immunol 27:901–909

    Article  CAS  Google Scholar 

  • Onda M, Beers R, Xiang L, Lee B, Weldon JE, Kreitman RJ, Pastan I (2011) Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci U S A 108:5742–5747

    Article  CAS  Google Scholar 

  • Pai LH, Wittes R, Setser A, Willingham MC, Pastan I (1996) Treatment of advanced solid tumors with immnuotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 2:350–353

    Article  CAS  Google Scholar 

  • Pastan I, Hassan R, FitzGerald DJ DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  CAS  Google Scholar 

  • Pirker R, FitzGerald DJ, Hamilton TC, Ozols RF, Laird W, Frankel A, Willingham MC, Pastan I (1985) Characterization of immunotoxins active against ovarian cancer cells. J Clin Invest 76:1261–1267

    Article  CAS  Google Scholar 

  • Reisfeld RA, Gillies SD (1996) Recombinant antibody fusion proteins for cancer immunotherapy. Curr Top Microbiol Immunol 213:27–53

    Article  CAS  Google Scholar 

  • Reiter Y (2001) Recombinant immunotoxins is targeted cancer cell therapy. Adv Cancer Res 81:93–124

    Article  CAS  Google Scholar 

  • Reiter Y, Brinkmann U, Kreitman RJ, Jung SH, Lee B, Pastan I (1994) Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33:5451–5459

    Article  CAS  Google Scholar 

  • Shankar S, Vaidyanathan G, Kuan CT, Bigner DD, Zalutsky MR (2006) Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance. Nucl Med Biol 33:101–110

    Article  CAS  Google Scholar 

  • Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrook C, Steinberg SM, Stetler-Stevenson M, Fitzgerald DJ, Pastan I (2010) Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res 16:1894–1903

    Article  CAS  Google Scholar 

  • Wikstrand CJ, Hale LP, Batra SK, Hill MI, Humphrey PA, Kurpad SN, Mclendon RE, Moscatello D, Pegram CN, Reist CJ, Traweek ST, Wong AJ, Zalutsky MR, Bigner DD (1995) Monoclonal-antibodies against EGFRvIII are tumor-specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55:3140–3148

    CAS  Google Scholar 

  • Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD (1998) The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neuro Virol 4:148–158

    CAS  Google Scholar 

  • Wikstrand CJ, Cokgor I, Sampson JH, Bigner DD (1999) Monoclonal antibody of human glioma: current status and future approaches. Cancer Metastasis Rev 18:451–464

    Article  CAS  Google Scholar 

  • Yamazaki H, Ohba Y, Tamaoki N, Shibuya M (1990) A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jap J Cancer Res 81:773–779

    Article  CAS  Google Scholar 

  • Yokata T, Milenic DE, Withlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    Google Scholar 

  • Zhang Y, Chertov O, Zhang J, Hassan R, Pastan I (2011) Cytotoxic activity of immunotoxin SS1P is modulated by TACE-dependent mesothelin shedding. Cancer Res 71:5915–5922

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Ira Pastan for the expression vectors and assay protocols. Mr. Joe Newland, Ray Rose, and Dr. Edward Wang contributed to the materials preparation for process development and cGMP production. Dr. Xiaoyi Yang and Gopalan Soman performed the bioactivity assay.

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contracts N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mentioned of trade names, commercial products, or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zhu.

Additional information

Hua Jiang and Yueqing Xie contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Xie, Y., Burnette, A. et al. Purification of clinical-grade disulfide stabilized antibody fragment variable—Pseudomonas exotoxin conjugate (dsFv-PE38) expressed in Escherichia coli . Appl Microbiol Biotechnol 97, 621–632 (2013). https://doi.org/10.1007/s00253-012-4319-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4319-2

Keywords

Navigation