Skip to main content
Log in

Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akeboshi H, Kasahara Y, Tsuji D, Itoh K, Sakuraba H, Chiba Y, Jigami Y (2009) Production of human β-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. Glycobiolgy 19:1002–1009

    Article  CAS  Google Scholar 

  • Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32:786–795

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Sakuraba H, Kotani M, Kase R, Kobayashi K, Takeuchi M, Ogasawara S, Maruyama Y, Nakajima T, Takaoka Y, Jigami Y (2002) Production in yeast of α-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 12:821–828

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304

    Article  CAS  PubMed  Google Scholar 

  • Conde R, Cueva R, Larriba G (2007) Rsc14-controlled expression of MNN6, MNN4 and MNN1 regulates mannosylphosphorylation of Saccharomyces cerevisiae cell wall mannoproteins. FEMS Yeast Res 7:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Gil JY, Park JN, Lee KJ, Kang JY, Kim YH, Kim S, Kim SY, Kwon O, Lim YT, Kang HA, Oh DB (2015) Increased mannosylphosphorylation of N-glycans by heterologous expression of YlMPO1 in glyco-engineered Saccharomyces cerevisiae for mannose-6-phosphate modification. J Biotechnol 206:66–74

    Article  CAS  PubMed  Google Scholar 

  • Gomathinayagam S, Mitchell T, Zartler ER, Heiss C, Azadi P, Zha D, Houston-Cummings NR, Jiang Y, Li F, Giaccone E, Porambo RJ, Anderson CL, Sethuraman N, Li H, Stadheim TA (2011) Structural elucidation of an α-1,2-mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 21:1606–1615

    Article  CAS  PubMed  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton SR, Zha D (2015) Progress in yeast glycosylation engineering. Methods Mol Biol 1321:73–90

    Article  PubMed  Google Scholar 

  • Hegemann JH, Heick SB (2011) Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 765:189–206

    Article  CAS  PubMed  Google Scholar 

  • Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, Mitchell T, Nett JH, Sharkey NJ, Stadheim TA, Li H, Hamilton SR (2011) Elimination of β-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345

    Article  CAS  PubMed  Google Scholar 

  • Kang HA, Kim SJ, Choi ES, Rhee SK, Chung BH (1998) Efficient production of intact human parathyroid hormone in a Saccharomyces cerevisiae mutant deficient in yeast aspartic protease 3 (YAP3). Appl Microbiol Biotechnol 50:187–192

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Kwon O, Gil JY, Oh DB (2016a) Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans. Anal Biochem 501:1–3

    Article  CAS  PubMed  Google Scholar 

  • Kang JY, Kwon O, Gil JY, Oh DB (2016b) Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags. Data Brief 7:1531–1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37:7701–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laroy W, Contreras R, Callewaert N (2006) Glycome mapping on DNA sequencing equipment. Nat Protoc 1:397–405

    Article  CAS  PubMed  Google Scholar 

  • Laukens B, De Visscher C, Callewaert N (2015) Engineering yeast for producing human glycoproteins: where are we now? Future Microbiol 10:21–34

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Gil JY, Kim SY, Kwon O, Ko K, Kim DI, Kim DK, Kim HH, Oh DB (2014) Molecular characterization of acidic peptide:N-glycanase from the dimorphic yeast Yarrowia lipolytica. J Biochem 157:35–43

    Article  PubMed  Google Scholar 

  • Lee KJ, Lee SM, Gil JY, Kwon O, Kim JY, Park SJ, Chung HS, Oh DB (2013) N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj J 30:537–547

    Article  CAS  PubMed  Google Scholar 

  • Lussier M, Sdicu AM, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:323–334

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Hirose M, Miwa T, Kuwae S, Ohi H (2004) Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene 324:129–137

    Article  CAS  PubMed  Google Scholar 

  • Mun JY, Lee KJ, Seo H, Sung MS, Cho YS, Lee SG, Kwon O, Oh DB (2013) Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis. Anal Chem 85:7462–7470

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of α-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268:26338–26345

    CAS  PubMed  Google Scholar 

  • Nakayama K, Feng Y, Tanaka A, Jigami Y (1998) The involvement of mnn4 and mnn6 mutations in mannosylphosphorylation of O-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1425:255–262

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odani T, Shimma Y, Tanaka A, Jigami Y (1996) Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6:805–810

    Article  CAS  PubMed  Google Scholar 

  • Odani T, Shimma Y, Wang XH, Jigami Y (1997) Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190

    Article  CAS  PubMed  Google Scholar 

  • Oh DB (2015) Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases. BMB Rep 48:438–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi T, Ikeda Y, Tanaka N, Nakakita S, Natsuka S, Giga-Hama Y, Takegawa K (2009) The och1 mutant of Schizosaccharomyces pombe produces galactosylated core structures of N-linked oligosaccharides. Biosci Biotechnol Biochem 73:407–414

    Article  CAS  PubMed  Google Scholar 

  • Park JN, Song Y, Cheon SA, Kwon O, Oh DB, Jigami Y, Kim JY, Kang HA (2011) Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans. Appl Environ Microbiol 77:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Tiels P, Baranova E, Piens K, De Visscher C, Pynaert G, Nerinckx W, Stout J, Fudalej F, Hulpiau P, Tännler S, Geysens S, Van Hecke A, Valevska A, Vervecken W, Remaut H, Callewaert N (2012) A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XH, Nakayama K, Shimma Y, Tanaka A, Jigami Y (1997) MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem 272:18117–18124

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Jiang JL, Gumlaw NK, Zhang J, Bercury SD, Ziegler RJ, Lee K, Kudo M, Canfield WM, Edmunds T, Jiang C, Mattaliano RJ, Cheng SH (2009) Glycoengineered acid α-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 17:954–963

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ohsuk Kwon or Doo-Byoung Oh.

Ethics declarations

Funding

This study was funded by the National Research Foundation of Korea [NRF-2013M3A9B6075888], the Next-Generation BioGreen 21 Program [PJ011078] of the Rural Development Administration, and Korea Research Institute of Bioscience and Biotechnology (KRIBB) in Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Yeong Hun Kim and Ji-Yeon Kang contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.H., Kang, JY., Gil, J.Y. et al. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes. Appl Microbiol Biotechnol 101, 2979–2989 (2017). https://doi.org/10.1007/s00253-017-8101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8101-3

Keywords

Navigation