Skip to main content
Log in

Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alleman JE (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci Techno 17(2–3):409–419

    Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16s ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microb 56(6):1919–1925

    CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bassin JP, Kleerebezem R, Rosado AS, van Loosdrecht MCM, Dezotti M (2012) Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors. Environ Sci Technol 46(3):1546–1555. doi:10.1021/es203356z

    Article  CAS  PubMed  Google Scholar 

  • Biswas K, Turner SJ (2012) Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage. Appl Environ Microb 78(3):855–864. doi:10.1128/Aem.06570-11

    Article  CAS  Google Scholar 

  • Blackburne R, Yuan ZG, Keller J (2008) Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2):303–312. doi:10.1007/s10532-007-9136-4

    Article  CAS  PubMed  Google Scholar 

  • Calderon K, Martin-Pascual J, Poyatos JM, Rodelas B, Gonzalez-Martinez A, Gonzalez-Lopez J (2012) Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions. Bioresource Technol 121:119–126. doi:10.1016/j.biortech.2012.06.078

    Article  CAS  Google Scholar 

  • Chen Q, Ni JR (2011) Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biot 38(9):1305–1310. doi:10.1007/s10295-010-0911-6

    Article  CAS  Google Scholar 

  • Chen S, Cheng X, Zhang X, Sun DZ (2012) Influence of surface modification of polyethylene biocarriers on biofilm properties and wastewater treatment efficiency in moving-bed biofilm reactors. Water Sci Technol 65(6):1021–1026. doi:10.2166/wst.2012.915

    Article  CAS  PubMed  Google Scholar 

  • Chu ZR, Wang K, Li XK, Zhu MT, Yang L, Zhang J (2015) Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing. Chem Eng J 262:41–48. doi:10.1016/j.cej.2014.09.067

    Article  CAS  Google Scholar 

  • De Clippeleir H, Yan XG, Verstraete W, Vlaeminck SE (2011) OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Appl Microbiol Biot 90(4):1537–1545. doi:10.1007/s00253-011-3222-6

    Article  Google Scholar 

  • Gabarro J, Ganigue R, Gich F, Ruscalleda M, Balaguer MD, Colprim J (2012) Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. Bioresource Technol 126:283–289. doi:10.1016/j.biortech.2012.09.011

    Article  CAS  Google Scholar 

  • Gabarro J, Hernandez-del Amo E, Gich F, Ruscalleda M, Balaguer MD, Colprim J (2013) Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate. Water Res 47(19):7066–7077. doi:10.1016/j.watres.2013.07.057

    Article  CAS  PubMed  Google Scholar 

  • Geng S, Pan XC, Mei R, Wang YN, Sun JQ, Liu XY, Tang YQ, Wu XL (2014) Ottowia shaoguanensis sp nov., isolated from coking wastewater. Curr Microbiol 68(3):324–329. doi:10.1007/s00284-013-0481-8

    Article  CAS  PubMed  Google Scholar 

  • Hibiya K, Tsuneda S, Hirata A (2000) Formation and characteristics of nitrifying biofilm on a membrane modified with positively-charged polymer chains. Colloid Surface B 18(2):105–112. doi:10.1016/S0927-7765(99)00141-1

    Article  CAS  Google Scholar 

  • Ibarbalz FM, Figuerola ELM, Erijman L (2013) Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. Water Res 47(11):3854–3864. doi:10.1016/j.watres.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  • Juretschko S, Loy A, Lehner A, Wagner M (2002) The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25(1):84–99. doi:10.1078/0723-2020-00093

    Article  CAS  PubMed  Google Scholar 

  • Kim TG, Yun J, Hong SH, Cho KS (2014) Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl Microbiol Biot 98(3):1417–1427. doi:10.1007/s00253-013-5057-9

    Article  CAS  Google Scholar 

  • Lackner S, Holmberg M, Terada A, Kingshott P, Smets BF (2009) Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification. Water Res 43(14):3469–3478. doi:10.1016/j.watres.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  • Liang YH, Li D, Zeng HP, Zhang CD, Zhang J (2015) Rapid start-up and microbial characteristics of partial nitrification granular sludge treating domestic sewage at room temperature. Bioresource Technol 196:741–745. doi:10.1016/j.biortech.2015.08.003

    Article  CAS  Google Scholar 

  • Lim JH, Baek SH, Lee ST (2009) Ferruginibacter alkalilentus gen. nov., sp nov and Ferruginibacter lapsinanis sp nov., novel members of the family ‘Chitinophagaceae’ in the phylum Bacteroidetes, isolated from freshwater sediment. Int J Syst Evol Micr 59:2394–2399. doi:10.1099/ijs.0.009480-0

    Article  CAS  Google Scholar 

  • Liu T, Li D, Zeng HP, Li XK, Zeng TT, Chang XY, Cai YA, Zhang J (2012) Biodiversity and quantification of functional bacteria in completely autotrophic nitrogen-removal over nitrite (CANON) process. Bioresource Technol 118:399–406. doi:10.1016/j.biortech.2012.05.036

    Article  CAS  Google Scholar 

  • Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7(5):715–722. doi:10.1111/j.1462-2920.2004.00746.x

    Article  CAS  PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Heine R, Rapala J (2009) Previously uncultured beta-Proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res 43(20):5075–5086. doi:10.1016/j.watres.2009.08.037

    Article  CAS  PubMed  Google Scholar 

  • Park H, Rosenthal A, Jezek R, Ramalingam K, Fillos J, Chandran K (2010) Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Res 44(17):5005–5013. doi:10.1016/j.watres.2010.07.022

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Van Gerven E, Zheng P, Kuenen JG, Jetten MSM (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res 31(8):1955–1962. doi:10.1016/S0043-1354(97)00055-9

    Article  CAS  Google Scholar 

  • Tian M, Zhao FQ, Shen X, Chu KH, Wang JF, Chen S, Guo Y, Liu HH (2015) The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J Environ Sci-China 35:181–190. doi:10.1016/j.jes.2014.12.027

    Article  PubMed  Google Scholar 

  • Tsuneda S, Park S, Hayashi H, Jung J, Hirata A (2001) Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Sci Technol 43(6):197–204

    CAS  PubMed  Google Scholar 

  • Wang XJ, Xia SQ, Chen L, Zhao JF, Renault NJ, Chovelon JM (2006) Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem 41(4):824–828. doi:10.1016/j.procbio.2005.10.015

    Article  CAS  Google Scholar 

  • Wang XH, Hu M, Xia Y, Wen XH, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microb 78(19):7042–7047. doi:10.1128/Aem.01617-12

    Article  CAS  Google Scholar 

  • Ye L, Shao MF, Zhang T, Tong AHY, Lok S (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res 45(15):4390–4398. doi:10.1016/j.watres.2011.05.028

    Article  CAS  PubMed  Google Scholar 

  • Yoo K, Ahn KH, Lee HJ, Lee KH, Kwak YJ, Song KG (1999) Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor. Water Res 33(1):145–154

    Article  CAS  Google Scholar 

  • You SJ, Chuang SH, Ouyang CF (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Res 37(10):2281–2290. doi:10.1016/S0043-1354(02)00636-X

    Article  CAS  PubMed  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamae P, Tomingas M, Tenno T (2012) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation 23(4):547–560. doi:10.1007/s10532-011-9532-7

    Article  CAS  PubMed  Google Scholar 

  • Zeng TT, Li D, Zeng HP, Zhang Z, Liu LQ, Zhang XJ, Zhang J (2013) Analysis of microbial population dynamics in a partial nitrifying SBR at ambient temperature. Curr Microbiol 66(6):614–620. doi:10.1007/s00284-013-0317-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Shao MF, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. Isme J 6(6):1137–1147. doi:10.1038/ismej.2011.188

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Li D, Liang YH, Zeng HP, He YP, Fan D, Zhang J (2015) Start-up, influence factors, and the microbial characteristics of partial nitrification in membrane bioreactor. Desalin Water Treat 54(3):581–589. doi:10.1080/19443994.2014.891081

    Article  CAS  Google Scholar 

  • Zhu XB, Tian JP, Liu C, Chen LJ (2013) Composition and dynamics of microbial community in a zeolite biofilter-membrane bioreactor treating coking wastewater. Appl Microbiol Biot 97(19):8767–8775. doi:10.1007/s00253-012-4558-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hong-lei Zhan from Stevens Institution of Technology for providing language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (grant number 51408095), the China Postdoctoral Science Foundation (grant numbers 2014M561236, 2015T80257), the Foundation of Liaoning Educational Committee (grant number L2014021), and the Fundamental Research Funds for the Central Universities (grant number DUT16RC(4)13).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Mao, Yj., Shi, Yp. et al. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor. Appl Microbiol Biotechnol 101, 2563–2574 (2017). https://doi.org/10.1007/s00253-016-8003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8003-9

Keywords

Navigation