Skip to main content
Log in

Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Psychrophilic enzymes display efficient activity at moderate or low temperatures (4–25 °C) and are therefore of great interest in biotechnological industries. We previously examined the crystal structure of BglU, a psychrophilic β-glucosidase from the bacterium Micrococcus antarcticus, at 2.2 Å resolution. In structural comparison and sequence alignment with mesophilic (BglB) and thermophilic (GlyTn) counterpart enzymes, BglU showed much lower contents of Pro residue and of charged amino acids (particularly positively charged) on the accessible surface area. In the present study, we investigated the roles of specific amino acid residues in the cold adaptedness of BglU. Mutagenesis assays showed that the mutations G261R and Q448P increased optimal temperature (from 25 to 40–45 °C) at the expense of low-temperature activity, but had no notable effects on maximal activity or heat lability. Mutations A368P, T383P, and A389E significantly increased optimal temperature (from 25 to 35–40 °C) and maximal activity (~1.5-fold relative to BglU). Thermostability of A368P and A389E increased slightly at 30 °C. Mutations K163P, N228P, and H301A greatly reduced enzymatic activity—almost completely in the case of H301A. Low contents of Pro, Arg, and Glu are important factors contributing to BglU’s psychrophilic properties. Our findings will be useful in structure-based engineering of psychrophilic enzymes and in production of mutants suitable for a variety of industrial processes (e.g., food production, sewage treatment) at cold or moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98:504–510

    Article  CAS  PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  • Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Oonanant W, Bevan DR, Esen A, Chen CJ, Opassiri R, Svasti J, Cairns JR (2008) Structural insights into rice BGlu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation. J Mol Biol 377:1200–1215

    Article  CAS  PubMed  Google Scholar 

  • Eyles SJ, Gierasch LM (2000) Mutiple roles of prolyl residues in structure and folding. J Mol Biol 301:737–747

    Article  CAS  PubMed  Google Scholar 

  • Fan H-X, Miao L-L, Liu Y, Liu H-C, Liu Z-P (2011) Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus. Enzyme Microbial Technol 49:94–99

    Article  CAS  Google Scholar 

  • Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:512840

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends in Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Hong MR, Kim YS, Park CS, Lee JK, Kim YS, Oh DK (2009) Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng 108:36–40

    Article  CAS  PubMed  Google Scholar 

  • Isorna P, Polaina J, Latorre-Garcia L, Canada FJ, Gonzalez B, Sanz-Aparicio J (2007) Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. J Mol Bio 371:1204–1218

    Article  CAS  Google Scholar 

  • Jónsdóttir LB, Ellertsson BÖ, Invernizzi G, Magnúsdóttir M, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM (2014) The role of salt bridges on the temperature adaptation of aqulysin I, a thermostable subtilisin-like proteinase. Biochim Biophys Acta 1844:2174–2181

    Article  PubMed  Google Scholar 

  • Kane L, Mindy M, Vincent JJM (2016) Directed evolution of a fungal beta glucosidase in Saccharomyces cerevisiae. Biotech Biofuels 9:52

    Article  Google Scholar 

  • Laidler KJ, King MC (1983) The development of transition-state theory. J Phys Chem 87(15):2657–2664

  • Liu H, Xu Y, Ma Y, Zhou P (2000) Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 50:715–719

    Article  CAS  PubMed  Google Scholar 

  • Miao L-L, Hou Y-J, Fan H-X, Qu J, Qi C, Liu Y, Li D-F, Liu Z-P (2016) Molecular structural basis for the cold adaptedness of the psychrophilic β-glucosidase BglU in Micrococcus antarcticus. Appl Environ Microbiol 82(7):2021–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montella S, Balan V, da Costa SL, Gunawan C, Giacobbe S, Pepe O, Faraco V (2016) Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia. AMB Express 6(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Neil D, Rawlings GS (2013) Handbook of proteolytic enzymes. Academic Press, New York Chapter 695

    Google Scholar 

  • Ramli ANM, Azhar MA, Shamsir MS, Rabu A, Murad AMA, Mahadi NM, Illias Md R (2013) Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis. J Mol Model 19:3369–3383

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS (2015) Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33:1912–1922

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN, Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64:486–501

    Article  CAS  PubMed  Google Scholar 

  • Wallecha A, Mishra S (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649:74–84

    Article  CAS  PubMed  Google Scholar 

  • Wang X, He X, Yang S, An X, Chang W, Liang D (2003) Structural basis for thermostability of β-glycosidase from the thermophilic eubacterium Thermus nonproteolyticus HG102. J Bacteriol 185:4248–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolterink-van Loo S, Siemerink MA, Perrakis G, Kaper T, Kengen SW, van der Oost J (2009) Improving low-temperature activity of Sulfolobus acidocaldarius 2-keto-3-deoxygluconate aldolase. Archaea 2:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom SJ, Kim BN, Kim YS, Oh DK (2012) Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J Agric Food Chem 60:1535–1541

    Article  CAS  PubMed  Google Scholar 

  • Zanphorlin LM, de Giuseppe PO, Honorato RV, Costa Tonoli CC, Fattori J, Crespim E, de Oliveira PS, Ruller R, Murakami MT (2016) Oligomerization as a strategy for cold adaptation: structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci Rep 6:23776–23789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Nature Science Foundation of China (No. 30970102) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCS2-YW-G-055-01). The authors are grateful to Dr. S. Anderson for the English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Pei Liu.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, LL., Fan, HX., Qu, J. et al. Specific amino acids responsible for the cold adaptedness of Micrococcus antarcticus β-glucosidase BglU. Appl Microbiol Biotechnol 101, 2033–2041 (2017). https://doi.org/10.1007/s00253-016-7990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7990-x

Keywords

Navigation