Skip to main content

Advertisement

Log in

Acetohydroxyacid synthases: evolution, structure, and function

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews FH, Rogers MP, Paul LN, McLeish MJ (2014) Perturbation of the monomer–monomer interfaces of the benzoylformate decarboxylase tetramer. Biochemistry 53:4358–4367. doi:10.1021/bi500081r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews FH, Tom AR, Gunderman PR, Novak WR, McLeish MJ (2013) A bulky hydrophobic residue is not required to maintain the v-conformation of enzyme-bound thiamin diphosphate. Biochemistry 52:3028–3030. doi:10.1021/bi400368j

    Article  CAS  PubMed  Google Scholar 

  • Baig IA, Gedi V, Lee S-C, Koh S-H, Yoon M-Y (2013) Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase. Enzym Microb Technol 53:243–249. doi:10.1016/j.enzmictec.2013.05.006

    Article  CAS  Google Scholar 

  • Baig IA, Moon J-Y, Kim M-S, Koo B-S, Yoon M-Y (2014) Structural and functional significance of the highly-conserved residues in Mycobacterium tuberculosis acetohydroxyacid synthase. Enzym Microb Technol 58:52–59. doi:10.1016/j.enzmictec.2014.02.009

    Article  CAS  Google Scholar 

  • Barak Z, Chipman DM (2012) Allosteric regulation in acetohydroxyacid synthases (AHASs)—different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 519:167–174. doi:10.1016/j.abb.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  • Barak Z, Chipman DM, Gollop N (1987) Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750–3756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hübner G, Barak Z, Chipman DM (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946–11954. doi:10.1021/bi0104524

    Article  CAS  PubMed  Google Scholar 

  • Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM (2012) Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate–thiamin diphosphate adduct in AHAS I. FEBS J 279:1967–1979. doi:10.1111/j.1742-4658.2012.08577.x

    Article  CAS  PubMed  Google Scholar 

  • Berthold CL, Moussatche P, Richards NG, Lindqvist Y (2005) Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J Biol Chem 280:41645–41654. doi:10.1074/jbc.M509921200

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Hans S, Bathe B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427. doi:10.1128/AEM.01844-08

    Article  CAS  PubMed  Google Scholar 

  • Bornemann S (2002) Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep 19:761–772. doi:10.1039/B108916C

    Article  CAS  PubMed  Google Scholar 

  • Bruhn H, Pohl M, Grötzinger J, Kula MR (1995) The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234:650–655. doi:10.1111/j.1432-1033.1995.650_b.x

    Article  CAS  PubMed  Google Scholar 

  • Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98:297–311. doi:10.1007/s00253-013-5310-2

    Article  PubMed  CAS  Google Scholar 

  • Candy JM, Duggleby RG (1994) Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis. Biochem J 300:7–13. doi:10.1042/bj3000007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candy J, Koga J, Nixon P, Duggleby R (1996) The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase. Biochem J 315:745–751. doi:10.1042/bj3150745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y-Y, Cronan J (1988) Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol 170:3937–3945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang A, Duggleby R (1997) Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J 327:161–169. doi:10.1042/bj3270161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75. doi:10.1016/j.ymben.2015.03.004

    Article  PubMed  CAS  Google Scholar 

  • Chien PN, Moon J-Y, Cho J-H, Lee S-J, Park J-S, Kim D-E, Park Y, Yoon M-Y (2010) Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors. Biosci Biotechnol Biochem 74:2281–2286. doi:10.1271/bbb.100496

    Article  CAS  Google Scholar 

  • Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401–419. doi:10.1016/S0167-4838(98)00083-1

    Article  CAS  PubMed  Google Scholar 

  • Chipman DM, Barak Z, Shaanan B, Vyazmensky M, Binshtein E, Belenky I, Temam V, Steinmetz A, Golbik R, Tittmann K (2009) Origin of the specificities of acetohydroxyacid synthases and glyoxylate carboligase. J Mol Catal B Enzym 61:50–55. doi:10.1016/j.molcatb.2009.03.015

    Article  CAS  Google Scholar 

  • Chipman DM, Duggleby RG, Tittmann K (2005) Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 9:475–481. doi:10.1016/j.cbpa.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  • Cho J-H, Lee M-Y, Baig IA, Ha N-R, Kim J, Yoon M-Y (2013) Biochemical characterization and evaluation of potent inhibitors of the Pseudomonas aeruginosa PA01 acetohydroxyacid synthase. Biochimie 95:1411–1421. doi:10.1016/j.biochi.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  • Choi K-J, Noh KM, Kim D-E, Ha BH, Kim EE, Yoon M-Y (2007) Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Arch Biochem Biophys 466:24–30. doi:10.1016/j.abb.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  • Costelloe SJ, Ward JM, Dalby PA (2008) Evolutionary analysis of the TPP-dependent enzyme family. J Mol Evol 66:36–49. doi:10.1007/s00239-007-9056-2

    Article  CAS  PubMed  Google Scholar 

  • De Rossi E, Leva R, Gusberti L, Manachini PL, Riccardi G (1995) Cloning, sequencing and expression of the ilvBNC gene cluster from Streptomyces avermitilis. Gene 166:127–132. doi:10.1016/0378-1119(95)00563-4

    Article  CAS  PubMed  Google Scholar 

  • Duggleby RG (2006) Domain relationships in thiamine diphosphate-dependent enzymes. Acc Chem Res 39:550–557. doi:10.1021/ar068022z

    Article  CAS  PubMed  Google Scholar 

  • Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36

    CAS  Google Scholar 

  • Duggleby RG, Pang SS, Yu H, Guddat LW (2003) Systematic characterization of mutations in yeast acetohydroxyacid synthase. Eur J Biochem 270:2895–2904. doi:10.1046/j.1432-1033.2003.03671.x

    Article  CAS  PubMed  Google Scholar 

  • Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf B, Jordan F (1993) Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-Å resolution. Biochemistry 32:6165–6170. doi:10.1021/bi00075a008

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Vyazmensky M, Berkovich D, Barak Z, Chipman DM (2004a) Substrate range of acetohydroxyacid synthase I from Escherichia coli in the stereoselective synthesis of α-hydroxy ketones. Biotechnol Bioeng 88:825–831. doi:10.1002/bit.20275

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Vyazmensky M, Berkovich D, Barak Z, Merchuk J, Chipman DM (2005) Column flow reactor using acetohydroxyacid synthase I from Escherichia coli as catalyst in continuous synthesis of R-phenylacetyl carbinol. Biotechnol Bioeng 89:733–740. doi:10.1002/bit.20392

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Vyazmensky M, Geresh S, Barak Z, Chipman DM (2003) Acetohydroxyacid synthase: a new enzyme for chiral synthesis of R-phenylacetylcarbinol. Biotechnol Bioeng 83:833–840. doi:10.1002/bit.10728

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Vyazmensky M, Vinogradov M, Berkovich D, Bar-Ilan A, Qimron U, Rosiansky Y, Barak Z, Chipman DM (2004b) Role of a conserved arginine in the mechanism of acetohydroxyacid synthase catalysis of condensation with a specific ketoacid substrate. J Biol Chem 279:24803–24812. doi:10.1074/jbc.M401667200

    Article  CAS  PubMed  Google Scholar 

  • Frank RA, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306:872–876. doi:10.1126/science.1101030

    Article  CAS  PubMed  Google Scholar 

  • Gedi V, Yoon MY (2012) Bacterial acetohydroxyacid synthase and its inhibitors–a summary of their structure, biological activity and current status. FEBS J 279:946–963. doi:10.1111/j.1742-4658.2012.08505.x

    Article  CAS  PubMed  Google Scholar 

  • Gokhale K, Tilak B (2015) Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets 16:689–699

    Article  CAS  PubMed  Google Scholar 

  • Gollop N, Damri B, Barak Z, Chipman DM (1989) Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Biochemistry 28:6310–6317. doi:10.1021/bi00441a024

    Article  CAS  PubMed  Google Scholar 

  • Grandoni JA, Zahler S, Calvo J (1992) Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol 174:3212–3219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graupner M, Xu H, White RH (2000) Identification of the gene encoding sulfopyruvate decarboxylase, an enzyme involved in biosynthesis of coenzyme M. J Bacteriol 182:4862–4867. doi:10.1128/JB.182.17.4862-4867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Han M, Xu J, Zhang W (2015) Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 109:106–112. doi:10.1016/j.pep.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  • Gusberti L, Cantoni R, DeRossi E, Branzoni M, Riccardi G (1996) Cloning and sequencing of the ilvBNC gene cluster from Mycobacterium avium. Gene 177:83–85. doi:10.1016/0378-1119(96)00275-2

  • Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255:77–82. doi:10.1016/0014-5793(89)81064-6

    Article  CAS  PubMed  Google Scholar 

  • He Y, Niu C, Wen X, Xi Z (2013) Biomacromolecular 3D-QSAR to decipher molecular herbicide resistance in acetohydroxyacid synthases. Mol Inform 32:139–144. doi:10.1002/cjoc.201300417

    Article  CAS  PubMed  Google Scholar 

  • Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM (1996) Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282–16291. doi:10.1021/bi961588i

    Article  CAS  PubMed  Google Scholar 

  • Jaña G, Jiménez V, Villà-Freixa J, Prat-Resina X, Delgado E, Alderete J (2010) Computational study on the carboligation reaction of acetohidroxyacid synthase: new approach on the role of the HEThDP-intermediate. Proteins 78:1774–1788. doi:10.1002/prot.22693

    PubMed  Google Scholar 

  • Jaña G, Jiménez V, Villà-Freixa J, Prat-Resina X, Delgado E, Alderete JB (2011) A QM/MM study on the last two steps of the catalytic cycle of acetohydroxyacid synthase. Comput Theor Chem 966:159–166. doi:10.1002/jcc.23523

    Article  CAS  Google Scholar 

  • Jung I-P, Cho J-H, Koo B-S, Yoon M-Y (2015) Functional evaluation of residues in the herbicide-binding site of Mycobacterium tuberculosis acetohydroxyacid synthase by site-directed mutagenesis. Enzyme Microb Tech 78:18–26. doi:10.1016/j.enzmictec.2015.06.009

    Article  CAS  Google Scholar 

  • Kaplun A, Binshtein E, Vyazmensky M, Steinmetz A, Barak Z, Chipman DM, Tittmann K, Shaanan B (2008) Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes. Nat Chem Biol 4:113–118. doi:10.1038/nchembio.62

    Article  CAS  PubMed  Google Scholar 

  • Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, Barak Z, Chipman DM, Shaanan B (2006) Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J Mol Biol 357:951–963. doi:10.1016/j.jmb.2005.12.077

    Article  CAS  PubMed  Google Scholar 

  • Karanth NM, Sarma SP (2012) The coil-to-helix transition in IlvN regulates the allosteric control of Escherichia coli acetohydroxyacid synthase I. Biochemistry 52:70–83. doi:10.1021/bi301415m

    Article  PubMed  CAS  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvb-ilvn-ilvc operon. J Bacteriol 175:5595–5603

  • Lawther RP, Calhoun DH, Adams CW, Hauser CA, Gray J, Hatfield GW (1981) Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A 78:922–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawther RP, Wek RC, Lopes JM, Perira R, Taillon BE, Wesley G (1987) The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucl Acids Res 15:2137–2155. doi:10.1093/nar/15.5.2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie MA, Celik L, Jørgensen KA, Schiøtt B (2005) Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations. Biochemistry 44:14792–14806. doi:10.1021/bi051134y

    Article  CAS  PubMed  Google Scholar 

  • Lonhienne T, Nouwens A, Williams CM, Fraser JA, Lee YT, West NP, Guddat LW (2016) Commercial herbicides can trigger the oxidative inactivation of acetohydroxyacid synthase. Angew Chem Int Ed 55:4247–4251. doi:10.1002/anie.201511985

    Article  CAS  Google Scholar 

  • Lu J, Brigham CJ, Plassmeier JK, Sinskey AJ (2015) Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 99:761–774. doi:10.1007/s00253-014-5965-3

    Article  CAS  PubMed  Google Scholar 

  • Machius M, Wynn RM, Chuang JL, Li J, Kluger R, Yu D, Tomchick DR, Brautigam CA, Chuang DT (2006) A versatile conformational switch regulates reactivity in human branched-chain α-ketoacid dehydrogenase. Structure 14:287–298. doi:10.1016/j.str.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  • McCourt J, Duggleby R (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210. doi:10.1007/s00726-005-0297-3

    Article  CAS  PubMed  Google Scholar 

  • McCourt JA, Pang SS, Guddat LW, Duggleby RG (2005) Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry 44:2330–2338. doi:10.1021/bi047980a

    Article  CAS  PubMed  Google Scholar 

  • McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci U S A 103:569–573. doi:10.1073/pnas.0508701103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel S, Elkayam T, Sella C, Vinogradov V, Vyazmensky M, Chipman DM, Barak Z (2001) Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J Mol Biol 307:465–477. doi:10.1006/jmbi.2000.4413

    Article  CAS  PubMed  Google Scholar 

  • Mendel S, Vinogradov M, Vyazmensky M, Chipman DM, Barak Z (2003) The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase III from Escherichia coli. J Mol Biol 325:275–284. doi:10.1016/S0022-2836(02)01142-7

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Neumann P, Koers E, Sjuts H, Lüdtke S, Sheldrick GM, Ficner R, Tittmann K (2012) Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin. Proc Natl Acad Sci U S A 109:10867–10872. doi:10.1073/pnas.1201280109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Sarma SP (2008) Escherichia coli ilvN interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry 47:1518–1531. doi:10.1021/bi701893b

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Nardi M, Hols P, Gulea M, Corrieu G, Monnet V (2003) Regulation of branched-chain amino acid biosynthesis by α-acetolactate decarboxylase in Streptococcus thermophilus. Lett Appl Microbiol 36:399–405. doi:10.1046/j.1472-765X.2003.01326.x

    Article  CAS  PubMed  Google Scholar 

  • Muller YA, Schulz GE (1993) Structure of the thiamine-and flavin-dependent enzyme pyruvate oxidase. Science 259:965–967. doi:10.1126/science.8438155

    Article  CAS  PubMed  Google Scholar 

  • Muller YA, Schumacher G, Rudolph R, Schulz GE (1994) The refined structures of a stabilized mutant and of wild-type pyruvate oxidase from Lactobacillus plantarum. J Mol Biol 237:315–335. doi:10.1006/jmbi.1994.1233

    Article  CAS  PubMed  Google Scholar 

  • Nemeria N, Tittmann K, Joseph E, Zhou L, Vazquez-Coll MB, Arjunan P, Hübner G, Furey W, Jordan F (2005) Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactate synthase with unusual stereoselectivity. J Biol Chem 280:21473–21482. doi:10.1074/jbc.M502691200

    Article  CAS  PubMed  Google Scholar 

  • Niu C, Feng W, Zhou Y, Wen X, Xi Z (2009) Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. Sci China B Chem 52:1362–1371. doi:10.1007/s11426-009-0213-x

    Article  CAS  Google Scholar 

  • Niu X, Liu X, Zhou Y, Niu C, Xi Z, Su X-D (2011) Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors. Sci China B 67:659–661. doi:10.1107/S1744309111008839

    CAS  Google Scholar 

  • Pang SS, Duggleby RG, Guddat LW (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J Mol Biol 317:249–262. doi:10.1006/jmbi.2001.5419

    Article  CAS  PubMed  Google Scholar 

  • Pang SS, Duggleby RG, Schowen RL, Guddat LW (2004) The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate. J Biol Chem 279:2242–2253. doi:10.1074/jbc.M304038200

    Article  CAS  PubMed  Google Scholar 

  • Pang SS, Guddat LW, Duggleby RG (2003) Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem 278:7639–7644. doi:10.1074/jbc.M211648200

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85:491–506. doi:10.1128/AEM.07056-11

    Article  CAS  PubMed  Google Scholar 

  • Petkowski JJ, Chruszcz M, Zimmerman MD, Heping Z, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A (2007) Crystal structures of TM0549 and NE1324: two orthologs of E. coli AHAS isozyme III small regulatory subunit. Protein Sci 16:1360–1367. doi:10.1110/ps.072793807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phalip V, Schmitt P, Diviès C (1995) Purification and characterization of the catabolic α-acetolactate synthase from Leuconostoc mesenteroides subsp. cremoris. Curr Microbiol 31:316–321. doi:10.1007/BF00314587

    Article  CAS  Google Scholar 

  • Porat I, Vinogradov M, Vyazmensky M, Chung-Dar L, Chipman DM, Abdelal AT, Barak Z (2004) Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. J Bacteriol 186:570–574. doi:10.1128/JB.186.2.570-574.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pue N, Guddat LW (2014) Acetohydroxyacid synthase: a target for antimicrobial drug discovery. Curr Pharm Des 20:740–753

    Article  CAS  PubMed  Google Scholar 

  • Renna MC, Najimudin N, Winik L, Zahler S (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricca E, Lago C, Sacco M, Fellce M (1991) Absence of acetohydroxy acid synthase III in Salmonella typhimurium is due to early termination of translation within the ilvI gene. Mol Microbiol 5:1741–1743. doi:10.1111/j.1365-2958.1991.tb01923.x

  • Schroder-Tittmann K, Meyer D, Arens J, Wechsler C, Tietzel M, Golbik R, Tittmann K (2013) Alternating sites reactivity is a common feature of thiamin diphosphate-dependent enzymes as evidenced by isothermal titration calorimetry studies of substrate binding. Biochemistry 52:2505–2507. doi:10.1021/bi301591e

    Article  PubMed  CAS  Google Scholar 

  • Schütz A, Golbik R, König S, Hübner G, Tittmann K (2005) Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Biochemistry 44:6164–6179. doi:10.1021/bi0473354

    Article  PubMed  CAS  Google Scholar 

  • Shaanan B, Chipman DM (2009) Reaction mechanisms of thiamin diphosphate enzymes: new insights into the role of a conserved glutamate residue. FEBS J 276:2447–2453. doi:10.1111/j.1742-4658.2009.06965.x

    Article  CAS  PubMed  Google Scholar 

  • Slutzker A, Vyazmensky M, Chipman DM, Barak Z (2011) Role of the C-terminal domain of the regulatory subunit of AHAS isozyme III: use of random mutagenesis with in vivo reconstitution (REM-ivrs). Biochim Biophys Acta 1814:449–455. doi:10.1016/j.bbapap.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Sommer B, Moeller HV, Haack M, Qoura F, Langner C, Bourenkov G, Garbe D, Loll B, Brück T (2015) Detailed structure–function correlations of Bacillus subtilis acetolactate synthase. Chembiochem 16:110–118. doi:10.1002/cbic.201402541

    Article  CAS  PubMed  Google Scholar 

  • Squires CH, DeFelice M, Devereux J, Calvo JM (1983) Molecular structure of ilvIH and its evolutionary relationship to ilvG in Escherichia coli K12. Nucleic Acids Res 11:5299–5313. doi:10.1093/nar/11.15.5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz A, Vyazmensky M, Meyer D, Barak Z, Golbik R, Chipman DM, Tittmann K (2010) Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli. Biochemistry 49:5188–5199. doi:10.1021/bi100555q

    Article  CAS  PubMed  Google Scholar 

  • Størmer F, Umbarger H (1964) The requirement for flavine adenine dinucleotide in the formation of acetolactate by Salmonella typhimurium extracts. Biochem Biophys Res Commun 17:587–592. doi:10.1016/0006-291X(64)90071-3

    Article  Google Scholar 

  • Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815. doi:10.1126/science.287.5459.1809

    Article  CAS  PubMed  Google Scholar 

  • Tittmann K, Vyazmensky M, Hübner G, Barak Z, Chipman DM (2005a) The carboligation reaction of acetohydroxyacid synthase II: steady-state intermediate distributions in wild type and mutants by NMR. Proc Natl Acad Sci U S A 102:553–558. doi:10.1073/pnas.0408210101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G (2005b) Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Biochemistry 44:13291–13303. doi:10.1021/bi051058z

    Article  CAS  PubMed  Google Scholar 

  • Tittmann K, Schröder K, Golbik R, McCourt J, Kaplun A, Duggleby RG, Barak Z, Chipman DM, Hübner G (2004) Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (α-hydroxyethyl) thiamin diphosphate in a “nonredox” flavoenzyme. Biochemistry 43:8652–8661. doi:10.1021/bi049897t

    Article  CAS  PubMed  Google Scholar 

  • Tse JMT, Schloss JV (1993) The oxygenase reaction of acetolactate synthase. Biochemistry 32:10398–10403. doi:10.1021/bi00090a015

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM (2005) Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta 1760:356–363. doi:10.1016/j.bbagen.2005.10.008

    Article  PubMed  CAS  Google Scholar 

  • Vogel C, Pleiss J (2014) The modular structure of ThDP-dependent enzymes. Proteins 82:2523–2537. doi:10.1002/prot.24615

    Article  CAS  PubMed  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52. doi:10.1016/j.ymben.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  • Vyazmensky M, Engel S, Kryukov O, Berkovich-Berger D, Kaplun L (2006) Construction of an active acetohydroxyacid synthase I with a flexible linker connecting the catalytic and the regulatory subunits. Biochim Biophys Acta 1764:955–960. doi:10.1016/j.bbapap.2006.02.011

    Article  CAS  PubMed  Google Scholar 

  • Vyazmensky M, Sella C, Barak Z, Chipman DM (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339–10346. doi:10.1021/bi9605604

    Article  CAS  PubMed  Google Scholar 

  • Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM (2009) Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 48:8731–8737. doi:10.1021/bi9009488

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhu XL, Cui CJ, Dong M, Jiang HL, Li ZM, Liu Z, Zhu WL, Wang JG (2013) Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. J Chem Inf Model 53:343–353. doi:10.1021/ci3004545

    Article  CAS  PubMed  Google Scholar 

  • Weinstock O, Sella C, Chipman DM, Barak Z (1992) Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol 174:5560–5566. doi:10.1021/ci3004545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wek RC, Hauser CA, Hatfield GW (1985) The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res 13:3995–4010. doi:10.1093/nar/13.11.3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmann M, Radloff R, Pleiss J (2010) The thiamine diphosphate dependent enzyme engineering database: a tool for the systematic analysis of sequence and structure relations. BMC Biochem 11:9. doi:10.1186/1471-2091-11-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wille G, Meyer D, Steinmetz A, Hinze E, Golbik R, Tittmann K (2006) The catalytic cycle of a thiamin diphosphate enzyme examined by cryocrystallography. Nat Chem Biol 2:324–328. doi:10.1038/nchembio788

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140. doi:10.1080/10408410701364604

    Article  CAS  PubMed  Google Scholar 

  • Xing R, Whitman WB (1994) Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. J Bacteriol 176:1207–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550. doi:10.1016/j.ymben.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Yan Y, Zhang W, Yu H, Chen M, Lu W, Ping S, Peng Z, Yuan M, Zhou Z (2011) Genome sequence of Acinetobacter calcoaceticus PHEA-2, isolated from industry wastewater. J Bacteriol 193:2672–2673. doi:10.1128/JB.00261-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Dai J, Lu Z, Dunaway-Mariano D (2003) The phosphonopyruvate decarboxylase from Bacteroides fragilis. J Biol Chem 278:41302–41308. doi:10.1074/jbc.M305976200

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Niu C, Wen X, Xi Z (2013) The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 14:746–752. doi:10.1002/cbic.201200680

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wen X, Niu C, Xi Z (2012) Arginine 26 and aspartic acid 69 of the regulatory subunit are key residues of subunits interaction of acetohydroxyacid synthase isozyme III from E. coli. Chembiochem 13:2445–2454. doi:10.1002/cbic.201200362

    Article  CAS  PubMed  Google Scholar 

  • Zohar Y, Einav M, Chipman DM, Barak Z (2003) Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Biochem Biophys Acta 1649:97–105. doi:10.1016/s1570-9639(03)00160-2

Download references

Acknowledgments

Funding was provided by grants from National Natural Science Foundation of China (NSFC31370131) and Six Talent Peaks Project of Jiangsu Province (2012-SWYY-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y. & Wang, X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 100, 8633–8649 (2016). https://doi.org/10.1007/s00253-016-7809-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7809-9

Keywords

Navigation