Skip to main content
Log in

Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Terpenes are a large and varied group of natural products with a wide array of bioactivities and applications. The chemical production of industrially relevant terpenes can be expensive and time-consuming due to the structural complexity of these compounds. Here, we studied Aspergillus nidulans as a heterologous host for monoterpene and diterpene production. Previously, we identified a novel diterpene gene cluster in A. nidulans and showed that overexpression of the cluster-specific transcription factor (pbcR) led to ent-pimara-8(14),15-diene (PD) production. We report further characterization of the A. nidulans PD synthase gene (pbcA). In A. nidulans, overexpression of pbcA resulted in PD production, while deletion of pbcA abolished PD production. Overexpression of Fusarium fujikuroi ent-kaurene synthase (cps/ks) and Citrus unshiu gamma-terpinene synthase resulted in ent-kaurene and gamma-terpinene production, respectively. A. nidulans is a fungal model organism and a close relative to other industrially relevant Aspergillus species. A. nidulans is a known producer of many secondary metabolites, but its ability to produce heterologous monoterpene and diterpene compounds has not been characterized. Here, we show that A. nidulans is capable of heterologous terpene production and thus has potential as a production host for industrially relevant compounds. The genetic engineering principles reported here could also be applied to other Aspergilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albermann S, Linnemannstons P, Tudzynski B (2013) Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechnol 97(7):2979–2995. doi:10.1007/s00253-012-4377-5

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41. doi:10.1016/j.ymben.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110(1):E99–107. doi:10.1073/pnas.1205532110

    Article  CAS  PubMed  Google Scholar 

  • Anyaogu DC, Mortensen UH (2015) Heterologous production of fungal secondary metabolites in Aspergilli. Front Microbiol 6:77. doi:10.3389/fmicb.2015.00077

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus genome database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40(Database issue):D653–D659. doi:10.1093/nar/gkr875

    Article  CAS  PubMed  Google Scholar 

  • Asikainen M, Jauhiainen O, Aaltonen O, Harlin A (2013) Continuous catalyst-free aromatization of γ-terpinene using air as an oxidant. Green Chem 15:3230–3235. doi:10.1039/C3GC41224E

    Article  CAS  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13(1):31–37. doi:10.1016/j.chembiol.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22. doi:10.1016/j.fgb.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  • Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755. doi:10.1126/science.1069516

    Article  CAS  PubMed  Google Scholar 

  • Bromann K, Toivari M, Viljanen K, Vuoristo A, Ruohonen L, Nakari-Setala T (2012) Identification and characterization of a novel diterpene Gene cluster in Aspergillus nidulans. PLoS One 7(4). doi:10.1371/journal.pone.0035450

  • Bromann K, Viljanen K, Moreira VM, Yli-Kauhaluoma J, Ruohonen L, Nakari-Setala T (2014) Isolation and purification of ent-pimara-8(14),15-diene from engineered Aspergillus nidulans by accelerated solvent extraction combined with HPLC. Anal Methods 6:1227–1234. doi:10.1039/C3AY41640B

    Article  CAS  Google Scholar 

  • Burg JS, Espenshade PJ (2011) Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 50(4):403–410. doi:10.1016/j.plipres.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacho RA, Tang Y, Chooi YH (2014) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:774. doi:10.3389/fmicb.2014.00774

    PubMed  Google Scholar 

  • Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277. doi:10.1038/nchembio875

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Kroon PA, Poulter CD (1994) Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci 3(4):600–607. doi:10.1002/pro.5560030408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442. doi:10.1021/cr050286w

    Article  CAS  PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357. doi:10.1073/pnas.0601456103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David H, Ozcelik IS, Hofmann G, Nielsen J (2008) Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9:163. doi:10.1186/1471-2164-9-163

    Article  PubMed  PubMed Central  Google Scholar 

  • Entian KD, Kotter P (1998) Yeast mutant and plasmid collections. In: Tuite AJP, Brown MF (eds) Yeast Gene analysis, vol 26. Academic Press, London, pp. 431–449

    Chapter  Google Scholar 

  • Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13(5):474–481. doi:10.1016/j.ymben.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Formighieri C, Melis A (2014) Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous beta-phellandrene production in Escherichia coli cultures. Arch Microbiol 196(12):853–861. doi:10.1007/s00203-014-1024-9

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438(7071):1105–1115. doi:10.1038/nature04341

    Article  CAS  PubMed  Google Scholar 

  • Garcia PA, de Oliveira AB, Batista R (2007) Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules 12(3):455–483. doi:10.3390/12030455

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361. doi:10.1016/B978-0-12-385120-8.00015-2

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  • Hillwig ML, Mann FM, Peters RJ (2011) Diterpenoid biopolymers: new directions for renewable materials engineering. Biopolymers 95(2):71–76. doi:10.1002/bip.21538

    Article  CAS  PubMed  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3(5):298–306. doi:10.1021/sb400115e

    Article  CAS  PubMed  Google Scholar 

  • Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13:91. doi:10.1186/1471-2180-13-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway Gene clusters in filamentous fungi. Fungal Genet Biol 21(1):17–29. doi:10.1006/fgbi.1997.0970

    Article  CAS  Google Scholar 

  • Kelly DE, Krasevec N, Mullins J, Nelson DR (2009) The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 46(Suppl 1):S53–S61. doi:10.1016/j.fgb.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25(4):656–661. doi:10.1039/b802939c

    Article  CAS  PubMed  Google Scholar 

  • Koziol A, Stryjewska A, Librowski T, Salat K, Gawel M, Moniczewski A, Lochynski S (2014) An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini-Rev Med Chem 14(14):1156–1168. doi:10.2174/1389557514666141127145820

    Article  CAS  PubMed  Google Scholar 

  • Lange BM (2015) Biosynthesis and biotechnology of high-value p-Menthane monoterpenes, including menthol, carvone, and limonene. Adv Biochem Eng Biotechnol. doi:10.1007/10_2014_289

    PubMed  Google Scholar 

  • Lim FY, Sanchez JF, Wang CC, Keller NP (2012) Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol 517:303–324. doi:10.1016/B978-0-12-404634-4.00015-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168(4):446–451. doi:10.1016/j.jbiotec.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  • Lubertozzi D, Keasling JD (2008) Expression of a synthetic Artemesia annua amorphadiene synthase in Aspergillus nidulans yields altered product distribution. J Ind Microbiol Biotechnol 35(10):1191–1198. doi:10.1007/s10295-008-0400-3

    Article  CAS  PubMed  Google Scholar 

  • Luskey KL, Stevens B (1985) Human 3-hydroxy-3-methylglutaryl coenzyme a reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. J Biol Chem 260(18):10271–10277

    CAS  PubMed  Google Scholar 

  • Mabey JE, Anderson MJ, Giles PF, Miller CJ, Attwood TK, Paton NW, Bornberg-Bauer E, Robson GD, Oliver SG, Denning DW (2004) CADRE: the Central Aspergillus Data REpository. Nucleic Acids Res 32(Database issue):D401–D405. doi:10.1093/nar/gkh009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42(Database issue):D560–D567. doi:10.1093/nar/gkt963

    Article  CAS  PubMed  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. doi:10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Peragon A, Miguel D, Orte A, Mota AJ, Ruedas-Rama MJ, Justicia J, Alvarez-Pez JM, Cuerva JM, Crovetto L (2014) Rational design of a new fluorescent ‘ON/OFF’ xanthene dye for phosphate detection in live cells. Org Biomol Chem 12(33):6432–6439. doi:10.1039/c4ob00951g

    Article  CAS  PubMed  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22(5):627–633. doi:10.1016/j.copbio.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505(2):131–143. doi:10.1016/j.abb.2010.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172(3):1557–1566. doi:10.1534/genetics.105.052563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95(4):684–691. doi:10.1002/bit.21017

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MT, Klejnstrup ML, Rohlfs M, Anyaogu DC, Nielsen JB, Gotfredsen CH, Andersen MR, Hansen BG, Mortensen UH, Larsen TO (2013) Aspergillus nidulans synthesize insect juvenile hormones upon expression of a heterologous regulatory protein and in response to grazing by Drosophila melanogaster larvae. PLoS One 8(8):e73369. doi:10.1371/journal.pone.0073369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104(6):1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering Terpene Biosynthesis in Streptomyces for Production of the Advanced Biofuel Precursor Bisabolene. ACS Synth Biol 17(4(4)):393–399. doi:10.1021/sb5002517

    Article  Google Scholar 

  • Piloto AM, Rovira D, Costa SPG, Gonçalves MST (2006) Oxobenzo[f]benzopyrans as new fluorescent photolabile protecting groups for the carboxylic function. Tetrahedron 62(51):11955–11962. doi:10.1016/j.tet.2006.09.085

    Article  CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AW (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  • Quin MB, Flynn CM, Schmidt-Dannert C (2014) Traversing the fungal terpenome. Nat Prod Rep 31(10):1449–1473. doi:10.1039/c4np00075g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87(2):200–212. doi:10.1002/bit.20128

    Article  CAS  PubMed  Google Scholar 

  • Renault H, Bassard JE, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34. doi:10.1016/j.pbi.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  • Richman AS, Gijzen M, Starratt AN, Yang Z, Brandle JE (1999) Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant J 19(4):411–421. doi:10.1046/j.1365-313X.1999.00531.x

    Article  CAS  PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16(5–6):339–346

    Article  CAS  PubMed  Google Scholar 

  • Schwarz FP, Wasik SP (1976) Fluorescence measurements of benzene, naphthalene, anthracene, pyrene, fluoranthene, and benzo(e)pyrene in water. Anal Chem 48(3):524–528

    Article  CAS  PubMed  Google Scholar 

  • Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, Portero CE, Narvaez-Trujillo A, Strobel SA (2015) Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases. J Biol Chem 290(13):8511–8526. doi:10.1074/jbc.M114.636159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada T, Endo T, Fujii H, Hara M, Ueda T, Kita M, Omura M (2004) Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu Marc. Plant Sci 166:49–58. doi:10.1016/j.plantsci.2003.07.006

    Article  CAS  Google Scholar 

  • Sivy TL, Fall R, Rosenstiel TN (2011) Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 75(12):2376–2383. doi:10.1271/bbb.110572

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Meng H, Li J, Wang J, Li Q, Wang Y, Zhang Y (2014) Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PLoS One 9(11):e112615. doi:10.1371/journal.pone.0112615

    Article  PubMed  PubMed Central  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66(6):597–611. doi:10.1007/s00253-004-1805-1

    Article  CAS  PubMed  Google Scholar 

  • Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttila M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41(46):13833–13838. doi:10.1021/bi0265325

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Friedrich DM, Beversluis MR, Hemmer SL, Joly AG, Huesemann MH, Truex MJ, Riley RG, Thompson CJ, Peyton BM (2001) A fluorescence spectroscopic study of phenanthrene sorption on porous silica. Environ Sci Technol 35(13):2710–2716. doi:10.1021/es001658f

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41(2):301–313. doi:10.1007/s10295-013-1366-3

    Article  CAS  PubMed  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37(35):12213–12220. doi:10.1021/bi980854k

    Article  CAS  PubMed  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990. doi:10.1007/s00253-006-0593-1

    Article  CAS  PubMed  Google Scholar 

  • Wortman JR, Gilsenan JM, Joardar V, Deegan J, Clutterbuck J, Andersen MR, Archer D, Bencina M, Braus G, Coutinho P, von Dohren H, Doonan J, Driessen AJ, Durek P, Espeso E, Fekete E, Flipphi M, Estrada CG, Geysens S, Goldman G, de Groot PW, Hansen K, Harris SD, Heinekamp T, Helmstaedt K, Henrissat B, Hofmann G, Homan T, Horio T, Horiuchi H, James S, Jones M, Karaffa L, Karanyi Z, Kato M, Keller N, Kelly DE, Kiel JA, Kim JM, van der Klei IJ, Klis FM, Kovalchuk A, Krasevec N, Kubicek CP, Liu B, Maccabe A, Meyer V, Mirabito P, Miskei M, Mos M, Mullins J, Nelson DR, Nielsen J, Oakley BR, Osmani SA, Pakula T, Paszewski A, Paulsen I, Pilsyk S, Pocsi I, Punt PJ, Ram AF, Ren Q, Robellet X, Robson G, Seiboth B, van Solingen P, Specht T, Sun J, Taheri-Talesh N, Takeshita N, Ussery D, van Kuyk PA, Visser H, van de Vondervoort PJ, de Vries RP, Walton J, Xiang X, Xiong Y, Zeng AP, Brandt BW, Cornell MJ, van den Hondel CA, Visser J, Oliver SG, Turner G (2009) The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol 46(Suppl 1):S2–13. doi:10.1016/j.fgb.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  • Xiong XJ, Wang H, Rao WB, Guo XF, Zhang HS (2010) 1,3,5,7-Tetramethyl-8-aminozide-difluoroboradiaza-s-indacene as a new fluorescent labeling reagent for the determination of aliphatic aldehydes in serum with high performance liquid chromatography. J Chromatogr A 1217(1):49–56. doi:10.1016/j.chroma.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Guleria P (2012) Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr 52(11):988–998. doi:10.1080/10408398.2010.519447

    Article  CAS  PubMed  Google Scholar 

  • Yaegashi J, Oakley BR, Wang CC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41(2):433–442. doi:10.1007/s10295-013-1386-z

    Article  CAS  PubMed  Google Scholar 

  • Yamano ST, Ishii T, Nakagawa M, Ikenaga H, Misawa N (1994) Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 58(6):1112–1114. doi:10.1271/bbb.58.1112

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ching CB (2014) Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast. Biotechnol Bioeng 111(3):608–617. doi:10.1002/bit.25123

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang C, Yang L, Choi ES, Kim SW (2015) Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli. Enzym Microb Technol 68:50–55. doi:10.1016/j.enzmictec.2014.10.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Bettina Tudzynski for her generous gift of Fusarium fujikuroi ent-kaurene synthase cDNA and Paul A. Bromann for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi Bromann.

Ethics declarations

Funding

This work was supported by Academy of Finland (SA-Biodive, 213084) and by Finnish Bioeconomy Cluster (Future Biorefinery 1 and 2).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bromann, K., Toivari, M., Viljanen, K. et al. Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production. Appl Microbiol Biotechnol 100, 6345–6359 (2016). https://doi.org/10.1007/s00253-016-7517-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7517-5

Keywords

Navigation