Skip to main content
Log in

Simultaneous denitrification and phosphorus removal by Agrobacterium sp. LAD9 under varying oxygen concentration

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although efficient aerobic denitrification has received increasing attention, few studies have been made on simultaneous denitrification and phosphorus removal (SDPR) under aerobic condition. In this study, SDPR by an efficient aerobic denitrifier, Agrobacterium sp. LAD9, was firstly demonstrated. High nitrate and phosphorus removal rates of 7.50 and 1.02 mg L−1 h−1 were achieved in wide range of O2 concentration from 5.92 to 20.02 mg L−1. The N2O production would be inhibited as O2 concentration exceeded 11.06 mg L−1, while the phosphorus removal efficiency would be generally improved with increasing O2 concentration. 15N mass spectrometry revealed that nitrogen removal accorded with the typical aerobic denitrification pathway, while 31P nuclear magnetic resonance spectroscopy (31P NMR) indicated the fate of phosphorus to cells, extracellular polymeric substances (EPS), and polyphosphate (poly-P) of the denitrifier. EPS acted as a reservoir of phosphorus and the transformation of poly-P was dynamic and depended on initial orthophosphate (ortho-P) content. The aerobic SDPR would greatly simplify the conventional wastewater treatment processes which required separated considerations of nitrogen and phosphorus removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barak Y, van Rijn J (2000) Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Appl Environ Microbiol 66:1209–1212

  • Bergaust L, Shapleigh J, Frostegård Å, Bakken L (2008) Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ Microbiol 10:3070–3081

    Article  CAS  PubMed  Google Scholar 

  • Blank LM (2012) The cell and P: from cellular function to biotechnological application. Curr Opin Biotechnol 23:846–851

    Article  CAS  PubMed  Google Scholar 

  • Bonin P, Raymond N (1990) Effects of oxygen on denitrification in marine sediments. Hydrobiologia 207:115–122

    Article  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Cade-Menun B (2005) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    Article  CAS  PubMed  Google Scholar 

  • Chen PZ, Li J, Li QX, Wang YC, Li SP, Ren TZ, Wang LG (2012) Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour Technol 116:266–270

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Ni JR (2011) Heterotrophic nitrification–aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol 38:1305–1310

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Ni JR (2012) Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification–aerobic denitrification. J Biosci Bioeng 113:619–623

    Article  CAS  PubMed  Google Scholar 

  • Cloete TE, Oosthuizen DJ (2001) The role of extracellular exopolymers in the removal of phosphorus from activated sludge. Water Res 35:3595–3598

    Article  CAS  PubMed  Google Scholar 

  • De-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  PubMed  Google Scholar 

  • Frolund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  • Hirota R, Kuroda A, Kato J, Ohtake H (2010) Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J Biosci Bioeng 109:423–432

    Article  CAS  PubMed  Google Scholar 

  • Joo H, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 100:184–191

  • Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM (2006) Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Li BZ, Wang ET, Yang JS, Yuan HL (2012) Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination 286:242–247

    Article  CAS  Google Scholar 

  • Li N, Ren N, Wang X, Kang H (2010) Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresour Technol 101:6265–6268

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li J (2015) Accumulation and isolation of simultaneous denitrifying polyphosphate-accumulating organisms in an improved sequencing batch reactor system at low temperature. Int Biodeterior Biodegrad 100:140–148

    Article  CAS  Google Scholar 

  • Long G, Zhu P, Shen Y, Tong MP (2009) Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria. Environ Sci Technol 43:2308–2314

    Article  CAS  PubMed  Google Scholar 

  • Lukow T, Diekmann H (1997) Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnol Lett 19:1157–1159

    Article  CAS  Google Scholar 

  • Mino T, van Loosdrecht M, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207

    Article  CAS  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, Yuan ZG, Keller J, Blackall LL, Reis M (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300

    Article  CAS  PubMed  Google Scholar 

  • Patureau D, Davison J, Bernet N, Moletta R (1994) Denitrification under various aeration conditions in Comamonas sp. strain SGLY2. FEMS Microbiol Ecol 14:71–78

  • Patureau D, Zumstein E, Delgenes JP, Moletta R (2000) Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb Ecol 39:145–152

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob Chang Biol 17:1497–1504

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Santos MM, Lemos PC, Reis M, Santos H (1999) Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl Environ Microbiol 65:3920–3928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127

    Article  CAS  PubMed  Google Scholar 

  • State Environmental Protection Administration of China (2002) Water and wastewater analysis methods. China Environ Sci Press, Beijing, pp. 132–286 (in Chinese)

  • Sun M, Li W, Mu Z, Wang H, Yu H, Li Y, Harada H (2012) Selection of effective methods for extracting extracellular polymeric substances (EPSs) from Bacillus megaterium TF10. Sep Purif Technol 95:216–221

    Article  CAS  Google Scholar 

  • Wan C, Yang X, Lee D, Du M, Wan F, Chen C (2011) Aerobic denitrification by novel isolated strain using NO2 −N as nitrogen source. Bioresour Technol 102:7244–7248

  • Wang Q, Ma F, Wei L, Jang X, Zhang X (2008) Screen and characteristics of a denitrifying phosphorus-removal bacteria. J Biotechnol 136S:S690–S691

    Article  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen LS, Wood GE, Almeida NFJ, Woo L, Chen YC, Paulsen IT, Eisen JA, Karp PD, Bovee DS, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu ZN, Romero P, Gordon D, Zhang SP, Yoo H, Tao YM, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Yang XP, Wang SM, Zhang DW, Zhou LX (2011) Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresour Technol 102:854–862

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Fang W, Wang Y, Sheng G, Zeng RJ, Li W, Yu H (2013) Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol 47:11482–11489

    Article  CAS  PubMed  Google Scholar 

  • Zheng MS, He D, Ma T, Chen Q, Liu ST, Ahmad M, Gui MY, Ni JR (2014) Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresour Technol 162:80–88

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (Grant No. 51208007) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120001120101) are fully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinren Ni.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Chen, Q., Gui, M. et al. Simultaneous denitrification and phosphorus removal by Agrobacterium sp. LAD9 under varying oxygen concentration. Appl Microbiol Biotechnol 100, 3337–3346 (2016). https://doi.org/10.1007/s00253-015-7217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7217-6

Keywords

Navigation