Skip to main content
Log in

Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum

  • Methods
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum forms inorganic polyphosphate (poly P) that may occur as soluble (cytosolic) poly P and/or as volutin granules. A suitable method for monitoring soluble and granular poly P in C. glutamicum was developed and applied to C. glutamicum cells cultivated under different growth conditions. Under phosphate-limiting conditions, C. glutamicum did not accumulate poly P, but it rebuilt its poly P storages when phosphate became available. The poly P content of C. glutamicum growing on glucose minimal medium with sufficient phosphate varied considerably during growth. While the poly P content was minimal in the midexponential growth phase, two maxima were observed in the early exponential growth phase and at entry into the stationary growth phase. Cells in the early exponential growth phase primarily contained granular poly P, while cells entering the stationary growth phase contained soluble, cytosolic poly P. These results and those obtained for C. glutamicum cells cultivated under hypo- or hyperosmotic conditions or during glutamate production revealed that the poly P content of C. glutamicum and the partitioning between cytosolic and granular forms of poly P are dynamics and depend on the growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bloehm J, Veninga M, Shepherd J (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol 61:926–936

    Article  Google Scholar 

  • Eggeling L, Bott M (eds) (2005) Handbook on Corynebacterium glutamicum. CRC Press, Boca Raton, FL

  • Harold FM (1963) Accumulation of inorganic polyphosphate in Aerobacter aerogenes. I. Relationship to growth and nucleic acid synthesis. J Bacteriol 86:216–221

    Article  CAS  Google Scholar 

  • Hughes DE, Muhammed A (1962) The metabolism of polyphosphate metabolism in bacteria. In: Ebel JP, Grunberg-Manago M (eds) Acides ribonucleidues et polyphosphates: structure, synthese et fonctions. Colloque international sur les acides ribonucleiques et polyphosphates (1961: Strasbourg). Centre National de la Recherche Scientifique, Paris, pp 591–602

    Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum as determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    Article  CAS  Google Scholar 

  • Kawaharasaki M, Tanaka H, Kanagawa T, Nakamura K (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4′,6-diamidino-2-phenylindole (DAPI) at a polyphosphate-probing concentration. Water Res 33:257–265

    Article  CAS  Google Scholar 

  • Kawai S, Mori S, Murata K (2003) Primary structure of inorganic polyphosphate/ATP-NAD kinase from Micrococcus flavus, and occurrence of substrate inorganic polyphosphate for the enzyme. Biosci Biotechnol Biochem 67:1751–1760

    Article  CAS  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium. glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    Article  CAS  Google Scholar 

  • Klauth P, Wilhelm R, Klumpp E, Poschen P, Groeneweg J (2004) Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles. J Microbiol Methods 59:189–198

    Article  CAS  Google Scholar 

  • Lambert C, Weuster-Botz D, Weichenhain R, Kreutz EW, de Graaf AA, Schoberth SM (2002) Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum using a novel oxygen sparger for real time 31P in vivo NMR. Acta Biotechnologica 22:245–260

    Article  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8

    Article  CAS  Google Scholar 

  • Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243:133–140

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of C. glutamicum. Microbiology 151:1359–1368

    Article  CAS  Google Scholar 

  • Ramos A, Letek M, Campelo AB, Vaquera J, Mateos LM, Gil JA (2005) Altered morphology produced by ftsZ expression in Corynebacterium glutamicum ATCC 13869. Microbiology 151:2563–2572

    Article  CAS  Google Scholar 

  • Rao NN, Roberts MF, Torriani A (1985) Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions. J Bacteriol 162:242–247

    Article  CAS  Google Scholar 

  • Roeßler M, Sewald X, Muller V (2003) Chloride dependence of growth in bacteria. FEMS Microbiol Lett 225:161–165

    Article  CAS  Google Scholar 

  • Serafim LS, Lemos PC, Levantesi C, Tandoi V, Santos H, Reis MA (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51:1–18

    Article  CAS  Google Scholar 

  • Stansen KC, Uy D, Delaunay S, Eggeling L, Goergen J-L, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  Google Scholar 

  • Tijssen JPF, Beekes HW, Steveninck J (1982) Localization of polyphosphates in Saccharomyces fragilis, as revealed by 4′,6-diamidino-2-phenylindole fluorescence. Biochim Biophys Acta 721:394–398

    Article  CAS  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    Article  CAS  Google Scholar 

  • Wendisch VF, Bott M (2005) Phosphorus metabolism of C. glutamicum. In: Eggeling L, Bott M (eds) Handbook on Corynebacterium glutamicum. CRC Press, Boca Raton, FL, pp 377–396

    Chapter  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:724–732

    Article  CAS  Google Scholar 

  • Zilles JL, Hung CH, Noguera DR (2001) Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal. In: Proceedings of the 3rd IWA international specialized conference on microorganisms in activated sludge and biofilm process, Rome, Italy, 13–15 June 2001, pp 75–81

Download references

Acknowledgements

We thank M. Michulitz (ZCH/Research Center Juelich) for the preparation of poly P P100. We thank F. Wahl (BK Giulini Chemie, Ladenburg) for the protocol to synthesize a long chain poly P and S. Wilbold (ZCH, Forschungszentrum Jeulich) for NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Klauth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klauth, P., Pallerla, S.R., Vidaurre, D. et al. Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum . Appl Microbiol Biotechnol 72, 1099–1106 (2006). https://doi.org/10.1007/s00253-006-0562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0562-8

Keywords

Navigation