Skip to main content
Log in

Peculiarities and impacts of expression of bacterial cyanophycin synthetases in plants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanophycin (CP) can be successfully produced in plants by the ectopic expression of the CphA synthetase from Thermosynechococcus elongatus BP-1 (Berg et al. 2000), yielding up to 6.8 % of dry weight (DW) in tobacco leaf tissue and 7.5 % in potato tubers (Huehns et al. 2008, 2009). Though, high amounts of the polymer lead to phenotypical abnormalities in both crops. The extension of abnormalities and the maximum amount of CP tolerated depend on the compartment that CP production is localized at the tissue/crop in which CP was produced (Huehns et al. 2008, 2009; Neumann et al. 2005). It cannot be ascribed to a depletion of arginine, lysine, or aspartate, the substrates for CP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aboulmagd E, Voss I, Oppermann-Sanio FB, Steinbüchel A (2001) Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules 2(4):1338–1342. doi:10.1021/bm010075a

    Article  CAS  PubMed  Google Scholar 

  • Allen MM, Hutchison F, Weathers PJ (1980) Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. J Bacteriol 141(2):687–693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arai T, Kino K (2008) A cyanophycin synthetase from Thermosynechococcus elongatus BP-1 catalyzes primer-independent cyanophycin synthesis. Appl Microbiol Biotechnol 81(1):69–78. doi:10.1007/s00253-008-1623-y

    Article  CAS  PubMed  Google Scholar 

  • Berg H, Ziegler K, Piotukh K, Baier K, Lockau W, Volkmer-Engert R (2000) Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin). Eur J Biochem 267(17):5561–5570. doi:10.1046/j.1432-1327.2000.01622.x

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128(4):1282–1290. doi:10.1104/pp.010615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic Are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155(4):1690–1708. doi:10.1104/pp.110.169581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Börnke F, Broer I (2010) Tailoring plant metabolism for the production of novel polymers and platform chemicals. Curr Opin Plant Biol 13(3):353–361. doi:10.1016/j.pbi.2010.01.005

    Article  Google Scholar 

  • Diniz SC, Voss I, Steinbüchel A (2006) Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng 93(4):698–717. doi:10.1002/bit.20760

    Article  CAS  PubMed  Google Scholar 

  • Elbahloul Y, Frey K, Sanders J, Steinbüchel A (2005a) Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production. Appl Environ Microbiol 71(12):7759–7767. doi:10.1128/AEM.71.12.7759-7767.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elbahloul Y, Krehenbrink M, Reichelt R, Steinbüchel A (2005b) Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol 71(2):858–866. doi:10.1128/AEM.71.2.858-866.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frey KM, Oppermann-Sanio FB, Schmidt H, Steinbüchel A (2002) Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl Environ Microbiol 68(7):3377–3384. doi:10.1128/AEM.68.7.3377-3384.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frommeyer M, Steinbuchel A (2013) Increased lysine content is the main characteristic of the soluble form of the polyamide cyanophycin synthesized by recombinant Escherichia coli. Appl Environ Microbiol 79(14):4474–4483. doi:10.1128/AEM.00986-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frommeyer M, Wiefel L, Steinbüchel A (2014) Features of the biotechnologically relevant polyamide family “cyanophycins” and their biosynthesis in prokaryotes and eukaryotes. Crit Rev Biotechnol 0(0):1–12 doi: 10.3109/07388551.2014.946467

  • Füser G, Steinbüchel A (2005) Investigations on the solubility behavior of cyanophycin. Solubility of cyanophycin in solutions of simple inorganic salts. Biomacromolecules 6(3):1367–1374. doi:10.1021/bm049371o

    Article  PubMed  Google Scholar 

  • Huehns M (2010) Production of the biodegradable polymer cyanophycin in transgenic Nicotiana tabacum and Solanum tuberosum plants. PhD thesis, University of Rostock

  • Huehns M, Broer I (2009) Characters of transgenic plants and their application in plant production: biopolymers. In: Kempken F, Jung C (eds) Biotechnology in agriculture and forestry Vol64 Genetic modification of plants—agriculture, horticulture and forestry. Springer Verlag, Heidelberg, pp 237–252

  • Huehns M, Neumann K, Lockau W, Ziegler K, Pistorius EK, Broer I (2004) Bioplastic in transgenic plants: cyanophycin as a suitable resource for polyaspartate. Paper presented at the Agricultural Biotechnology International Conference, Cologne, Germany

  • Huehns M, Neumann K, Hausmann T, Ziegler K, Klemke F, Kahmann U, Staiger D, Lockau W, Pistorius EK, Broer I (2008) Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol J 6(4):321–336. doi:10.1111/j.1467-7652.2007.00320.x

    Article  CAS  Google Scholar 

  • Huehns M, Neumann K, Hausmann T, Klemke F, Lockau W, Kahmann U, Kopertekh L, Staiger D, Pistorius EK, Reuther J, Waldvogel E, Wohlleben W, Effmert M, Junghans H, Neubauer K, Kragl U, Schmidt K, Schmidtke J, Broer I (2009) Tuber-specific cphA expression to enhance cyanophycin production in potatoes. Plant Biotechnol J 7(9):883–898. doi:10.1111/j.1467-7652.2009.00451.x

    Article  CAS  Google Scholar 

  • Law AM, Lai SWS, Tavares J, Kimber MS (2009) The structural basis of β-peptide-specific cleavage by the serine protease cyanophycinase. J Mol Biol 392(2):393–404. doi:10.1016/j.jmb.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  • Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21(9):891–899

    PubMed  Google Scholar 

  • Maheswaran M, Ziegler K, Lockau W, Hagemann M, Forchhammer K (2006) P(II)-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803. J Bacteriol 188(7):2730–2734. doi:10.1128/JB.188.7.2730-2734.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BioMed Res Int. doi:10.1155/2014/136419

    PubMed Central  PubMed  Google Scholar 

  • Meussen BJ, Weusthuis RA, Sanders JPM, de Graaff LH (2012) Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene. Appl Microbiol Biotechnol 93(3):1167–1174. doi:10.1007/s00253-011-3604-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mooibroek H, Oosterhuis N, Giuseppin M, Toonen M, Franssen H, Scott E, Sanders J, Steinbüchel A (2007) Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol 77(2):257–267. doi:10.1007/s00253-007-1178-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morandini P (2013) Control limits for accumulation of plant metabolites: brute force is no substitute for understanding. Plant Biotechnol J 11(2):253–267. doi:10.1111/pbi.12035

    Article  CAS  PubMed  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci U S A 91(26):12760–12764. doi:10.1073/pnas.91.26.12760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neubauer K, Hühns M, Hausmann T, Klemke F, Lockau W, Kahmann U, Pistorius EK, Kragl U, Broer I (2012) Isolation of cyanophycin from tobacco and potato plants with constitutive plastidic cphATe gene expression. J Biotechnol 158(1–2):50–58. doi:10.1016/j.jbiotec.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  • Neumann K, Stephan DP, Ziegler K, Huhns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3(2):249–258. doi:10.1111/j.1467-7652.2005.00122.x

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256(5056):520–523

    Article  CAS  PubMed  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol 138(3):1232–1246. doi:10.1104/pp.104.057729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sallam A, Steinbuchel A (2009) Cyanophycin-degrading bacteria in digestive tracts of mammals, birds and fish and consequences for possible applications of cyanophycin and its dipeptides in nutrition and therapy. J Appl Microbiol 107(2):474–484. doi:10.1111/j.1365-2672.2009.04221.x

    Article  CAS  PubMed  Google Scholar 

  • Sallam A, Steinbuchel A (2010) Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol 87(3):815–828. doi:10.1007/s00253-010-2641-0

    Article  CAS  PubMed  Google Scholar 

  • Santos S, Torcato I, Castanho MARB (2012) Biomedical applications of dipeptides and tripeptides. Pept Sci 98(4):288–293. doi:10.1002/bip.22067

    Article  CAS  Google Scholar 

  • Simon R (1973) The effect of chloramphenicol on the production of cyanophycin granule polypeptide in the blue-green alga Anabaena cylindrica. Archiv Mikrobiol 92(2):115–122. doi:10.1007/BF00425009

    Article  CAS  Google Scholar 

  • Simon RD, Weathers P (1976) Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochim Biophys Acta Protein Struct Mol Enzymol 420(1):165–176. doi:10.1016/0005-2795(76)90355-X

    Article  CAS  Google Scholar 

  • Snell KD, Singh V, Brumbley SM (2015) Production of novel biopolymers in plants: recent technological advances and future prospects. Curr Opin Biotechnol 32:68–75. doi:10.1016/j.copbio.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  • Steinle A, Oppermann-Sanio FB, Reichelt R, Steinbüchel A (2008) Synthesis and accumulation of cyanophycin in transgenic strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74(11):3410–3418. doi:10.1128/AEM.00366-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinle A, Bergander K, Steinbüchel A (2009) Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Appl Environ Microbiol 75(11):3437–3446. doi:10.1128/AEM.00383-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinle A, Witthoff S, Krause JP, Steinbüchel A (2010) Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Appl Environ Microbiol 76(4):1062–1070. doi:10.1128/AEM.01659-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tseng W-C, Fang T-Y, Cho C-Y, Chen P-S, Tsai C-S (2012) Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnol Prog 28(2):358–363. doi:10.1002/btpr.1513

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Poirier Y (2012) Plants as factories for bioplastics and other novel biomaterials. Plant Biotechnol Agric. 481–494

  • Xing S, van Deenen N, Magliano P, Frahm L, Forestier E, Nawrath C, Schaller H, Gronover CS, Prüfer D, Poirier Y (2014) ATP citrate lyase activity is post-translationally regulated by sink strength and impacts the wax, cutin and rubber biosynthetic pathways. Plant J 79(2):270–284. doi:10.1111/tpj.12559

    Article  CAS  PubMed  Google Scholar 

  • Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W (1998) Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem 254(1):154–159. doi:10.1046/j.1432-1327.1998.2540154.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Nausch.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nausch, H., Huckauf, J. & Broer, I. Peculiarities and impacts of expression of bacterial cyanophycin synthetases in plants. Appl Microbiol Biotechnol 100, 1559–1565 (2016). https://doi.org/10.1007/s00253-015-7212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7212-y

Keywords

Navigation