Skip to main content
Log in

Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abed RMM, Safi NMD, Koster J, de Beer D, El-Nahhal Y, Rullkotter J, Garcia-Pichel F (2002) Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. App Environ Microbiol 68(4):1674–1683. doi:10.1128/aem.68.4.1674-1683.2002

    Article  CAS  Google Scholar 

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12(10):2783–2796. doi:10.1111/j.1462-2920.2010.02248.x

    CAS  PubMed  Google Scholar 

  • Aburto A, Peimbert M (2011) Degradation of a benzene-toluene mixture by hydrocarbon-adapted bacterial communities. Ann Microbiol 61(3):553–562. doi:10.1007/s13213-010-0173-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta‐González A, Rosselló‐Móra R, Marqués S (2013) Characterization of the anaerobic microbial community in oil‐polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15(1):77–92

    Article  PubMed  Google Scholar 

  • Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol 44(2):95–106. doi:10.1007/s00248-002-0005-8

    Article  CAS  PubMed  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917. doi:10.1038/ismej.2010.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadalavada S, Datta B, Naidu R (2012) Optimal identification of groundwater pollution sources using feedback monitoring information: a case study. Environ Forensics 13(2):140–153. doi:10.1080/15275922.2012.676147

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non‐parametric multivariate analyses of changes in community structure. Aus J Ecol 18(1):117–143

    Article  Google Scholar 

  • Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011. doi:10.4061/2011/941810

  • Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405

    Article  CAS  PubMed  Google Scholar 

  • DeJong T (1975) A comparison of three diversity indices based on their components of richness and evenness. Oikos 222–227

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64(10):3869–3877

    CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3), e16943. doi:10.1371/journal.pone.0016943

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  • Elshahed MS, Bhupathiraju VK, Wofford NQ, Nanny MA, McInerney MJ (2001) Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” strain SB in syntrophic association with H-2-using microorganisms. Appl Environ Microbiol 67(4):1728–1738. doi:10.1128/aem.67.4.1728-1738.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans PN, Hinds LA, Sly LI, McSweeney CS, Morrison M, Wright A-DG (2009) Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii). Appl Environ Microbiol 75(8):2598–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrenfeld N, Cozzarelli IM, Bailey Z, Pruden A (2014) Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microbial Ecol 68(3):453–462. doi:10.1007/s00248-014-0421-6

    Article  CAS  Google Scholar 

  • Fardeau ML, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149

    Article  CAS  PubMed  Google Scholar 

  • Ghazali FM, Rahman R, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67. doi:10.1016/j.ibiod.2004.02.002

    Article  CAS  Google Scholar 

  • Glatz BA, Goepfert J (1976) Defined conditions for synthesis of Bacillus cereus enterotoxin by fermenter-grown cultures. Appl Environ Microbiol 32(3):400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao OJ, Chen M, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26(1):155–187

    Article  CAS  Google Scholar 

  • Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10(5):331–339

    Article  CAS  PubMed  Google Scholar 

  • Hers I, Jourabchi P, Lahvis MA, Dahlen P, Luo EH, Johnson P, DeVaull GE, Mayer KU (2014) Evaluation of seasonal factors on petroleum hydrocarbon vapor biodegradation and intrusion potential in a cold climate. Groundw Monit Remediat 34(4):60–78

    CAS  Google Scholar 

  • Huang YX, Li L (2014) Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ Res 86(3):277–284. doi:10.2175/106143013x13807328849495

    Article  CAS  PubMed  Google Scholar 

  • Huntley D, Beckett GD (2002) Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. J Contam Hydrol 59(1–2):3–26. doi:10.1016/s0169-7722(02)00073-6

    Article  CAS  PubMed  Google Scholar 

  • Illman WA, Alvarez PJ (2009) Performance assessment of bioremediation and natural attenuation. Crit Rev Environ Sci Technol 39(4):209–270

    Article  CAS  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171(2):107–114. doi:10.1007/s002030050685

    Article  CAS  PubMed  Google Scholar 

  • Jennings ME, Schaff CW, Horne AJ, Lessner FH, Lessner DJ (2014) Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen. Microbiology 160(Pt 2):270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen KS, Salminen JM, Björklöf K (2010) Monitored natural attenuation. Bioremediation. Springer, pp 217–233

  • Jung M-Y, Park S-J, Min D, Kim J-S, Rijpstra WIC, Damsté JSS, Kim G-J, Madsen EL, Rhee S-K (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Appl Environ Microbiol 77(24):8635–8647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi B, Habibi M, Esvand M (2015) Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J Environ Health Sci Eng 13. doi:10.1186/s40201-015-0175-1

  • Kleikemper J, Pombo SA, Schroth MH, Sigler WV, Pesaro M, Zeyer J (2005) Activity and diversity of methanogens in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol 71(1):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66(1):143–157. doi:10.1111/j.1574-6941.2008.00536.x

    Article  CAS  PubMed  Google Scholar 

  • Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94(4):851–873. doi:10.1007/s00253-012-4025-0

    Article  CAS  PubMed  Google Scholar 

  • Landmeyer J, Chapelle F, Petkewich M, Bradley P (1998) Assessment of natural attenuation of aromatic hydrocarbons in groundwater near a former manufactured-gas plant, South Carolina, USA. Environ Geol 34(4):279–292

    Article  CAS  Google Scholar 

  • Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108(5):400–407

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Gitiafroz R, Devine CE, Gong YC, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80(14):4095–4107. doi:10.1128/aem.00717-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5. doi:10.3389/fmicb.2014.00332

  • McCoy K, Zimbron J, Sale T, Lyverse M (2014) Measurement of natural losses of LNAPL using CO2 traps. Groundwater 53(4):658–667. doi:10.1111/gwat.12240

    Article  Google Scholar 

  • McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104(18):7600–7605

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris BE, Herbst FA, Bastida F, Seifert J, von Bergen M, Richnow HH, Suflita JM (2012) Microbial interactions during residual oil and n‐fatty acid metabolism by a methanogenic consortium. Environ Microbiol Rep 4(3):297–306

    Article  CAS  PubMed  Google Scholar 

  • Mountfort D, Brulla W, Krumholz LR, Bryant M (1984) Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34(2):216–217

    Article  Google Scholar 

  • Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea. Microbial Biotechnol 4(5):585–602

    Article  CAS  Google Scholar 

  • Newman WA, Kimball G, Consultants DE (1991) Dissolved oxygen mapping: a powerful tool for site assessments and ground water monitoring. In: Proceedings of the Fifth National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring, and Geophysical Methods

  • Ortega-Calvo J-J, Alexander M (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl Environ Microbiol 60(7):2643–2646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:1–8. doi:10.3389/fmicb.2011.00081

    Article  Google Scholar 

  • Polissi A, Bestetti G, Bertoni G, Galli E, Deho G (1990) Genetic analysis of chromosomal operons involved in degradation of aromatic hyrocarbons in Pseudomonas putida TMB. J Bacteriol 172(11):6355–6362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravot G, Ollivier B, Magot M, Patel B, Crolet J, Fardeau M, Garcia J (1995) Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales. Appl Environ Microbiol 61(5):2053–2055

  • ITRC (Interstate Technology & Regulatory Council) (2009a) Evaluating LNAPL remedial technologies for achieving project goals. LNAPL-2. Interstate Technology & Regulatory Council, LNAPLs Team, Washington, D.C. www.itrcweb.org

  • ITRC (Interstate Technology & Regulatory Council) (2009b) Evaluating natural source zone depletion at sites with LNAPL. LNAPL-1. Interstate Technology & Regulatory Council, LNAPLs Team, Washington, D.C. www.itrcweb.org

  • Roggemans S, Bruce CL, Johnson PC, Johnson RL (2001) Vadose zone natural attenuation of hydrocarbon vapors: an empirical assessment of soil gas vertical profile data. API Soil and Water Research Bulletin 15

  • Roh JW, Bang JH, Nam DH (1992) Nutritional requirements of Lysobacter lactamgenus for the production of cephabacins. Biotechnol Lett 14(6):455–460

    Article  CAS  Google Scholar 

  • Roy S, Vishnuvardhan M, Das D (2014) Improvement of hydrogen production by newly isolated Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1. Int J Hydrog Energy 39(14):7541–7552. doi:10.1016/j.ijhydene.2013.06.128

    Article  CAS  Google Scholar 

  • Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108(6):501–507. doi:10.1016/j.jbiosc.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  • Salamanca D, Engesser KH (2014) Isolation and characterization of two novel strains capable of using cyclohexane as carbon source. Environ Sci Pollut Res 21(22):12757–12766. doi:10.1007/s11356-014-3206-z

    Article  CAS  Google Scholar 

  • Sale T (2003) Answers to frequently asked questions about managing risk at LNAPL sites. API Soil and Water Research Bulletin (18): 1–20

  • Seagren EA, Rittmann BE, Valocchi AJ (2002) Bioenhancement of NAPL pool dissolution: experimental evaluation. J Contam Hydrol 55(1):57–85

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45(13):5892–5899

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452

    Article  CAS  PubMed  Google Scholar 

  • Simarro R, González N, Bautista LF, Molina MC (2013) Biodegradation of high‐molecular‐weight polycyclic aromatic hydrocarbons by a wood‐degrading consortium at low temperatures. FEMS Microbiol Ecol 83(2):438–449

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sarma PM, Lal B (2014) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int J Hydrog Energy 39(9):4206–4214. doi:10.1016/j.ijhydene.2013.12.179

    Article  CAS  Google Scholar 

  • Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75(9):2613–2620. doi:10.1128/aem.01955-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15(9):2517–2531. doi:10.1111/1462-2920.12133

    Article  PubMed  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AAM, Grotenhuis T, Rijnaarts HHM, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630. doi:10.1128/aem.02747-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tischer K, Kleinsteuber S, Schleinitz KM, Fetzer I, Spott O, Stange F, Lohse U, Franz J, Neumann F, Gerling S, Schmidt C, Hasselwander E, Harms H, Wendeberg A (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15(9):2603–2615. doi:10.1111/1462-2920.12168

    Article  CAS  PubMed  Google Scholar 

  • Viñas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71(11):7008–7018

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microbial Biotechnol 4(6):710–724. doi:10.1111/j.1751-7915.2011.00260.x

    Article  Google Scholar 

  • Wang LY, Ke WJ, Sun XB, Liu JF, Gu JD, Mu BZ (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98(9):4209–4221. doi:10.1007/s00253-013-5472-y

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitby C, Lund ST (2009) Applied microbiology and molecular biology in oil field systems. Springer, Netherlands

    Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74(3):792–801. doi:10.1128/aem.01951-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of TOL plasmid. J Bacteriol 124(1):7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19(2):247–257

    Article  CAS  PubMed  Google Scholar 

  • Zeman NR, Renno MI, Olson MR, Wilson LP, Sale TC, De Long SK (2014) Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure. Biodegradation 25(4):569–585. doi:10.1007/s10532-014-9682-5

    CAS  PubMed  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401(6750):266–269

    Article  CAS  PubMed  Google Scholar 

  • Zhalnina KV, Dias R, Leonard MT, de Quadros PD, Camargo FA, Drew JC, Farmerie WG, Daroub SH, Triplett EW (2014) Genome sequence of Candidatus Nitrososphaera evergladensis from group I. 1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 9(7), e101648

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Chevron, Exxon Mobil, and the National Science Foundation via an Alliance for the Graduate Education and Professoriate (AGEP) fellowship awarded to M. Irianni - Renno. The authors would like to thank site consultants from TriHydro Inc., Alysha Hakala, Thomas Gardner, Stephanie Whitfield, Shawn Harshman, and Ben McAlexander, for their technical support in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. De Long.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by Chevron and Exxon Mobil and by the US National Science Foundation via an Alliance for the Graduate Education and Professoriate (AGEP) fellowship awarded to M. Irianni - Renno.

Conflict of interest

M. Irianni - Renno declares she has no conflict of interest. D. Akhbari declares he has no conflict of interest. M.R. Olson declares he has no conflict of interest. A.P. Byrne declares he has no conflict of interest. E. Lefevre declares she has no conflict of interest. J. Zimbron declares he has no conflict of interest. M. Lyverse declares he has no conflict of interest. T.C. Sale declares he has no conflict of interest. S.K. De Long declares she has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.76 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irianni-Renno, M., Akhbari, D., Olson, M.R. et al. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body. Appl Microbiol Biotechnol 100, 3347–3360 (2016). https://doi.org/10.1007/s00253-015-7106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7106-z

Keywords

Navigation