Skip to main content
Log in

Enzymatic technologies for remediation of hydrophobic organic pollutants in soil

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Worldwide there are numerous contaminated sites as a result of the widespread production and use of chemicals in industrial and military activities as well as poor schemes of waste disposal and accidental spillages. The implementation of strategies for decontamination and restoration of polluted sites has become a priority, being bioremediation with biological agents a promising alternative. Enzyme-based technologies offer several advantages over the use of microbial cells, provided that the biocatalyst meets specific requirements: efficiency to remove the target pollutant/s, non-dependency on expensive coenzymes or cofactors, enzyme stability, and an affordable production system. In this mini-review, the direct application of enzymes for in situ soil bioremediation is explored, and also novel ex situ enzymatic technologies are presented. This new perspective provides a valuable insight into the different enzymatic alternatives for decontamination of soils. Examples of recent applications are reported, including pilot-scale treatments and patented technologies, and the principles of operation and the main requirements associated are described. Furthermore, the main challenges regarding the applicability of enzymatic technologies for remediation of hydrophobic organic pollutants from soil are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, Castillo MD, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Ahn MY, Dec J, Kim JE, Bollag JM (2002) Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31(5):1509–1515

    Article  CAS  PubMed  Google Scholar 

  • Ahn M-Y, Zimmerman AR, Martínez CE, Archibald DD, Bollag J-M, Dec J (2007) Characteristics of Trametes villosa laccase adsorbed on aluminum hydroxide. Enzym Microb Technol 41(1–2):141–148

    Article  CAS  Google Scholar 

  • Alcalde M (2015) Engineering the ligninolytic enzyme consortium. Trends Biotechnol 33(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24(6):281–287

    Article  CAS  PubMed  Google Scholar 

  • Aluyor EO, Ori-Jesu M (2009) Biodegradation of mineral oils—a review. Afr J Biotechnol 8(6):915–920

    CAS  Google Scholar 

  • Anastasi A, Tigini V, Varese G (2013) The Bioremediation Potential of Different Ecophysiological Groups of Fungi. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin Heidelberg, pp 29–49

  • Arca-Ramos A, Eibes G, Moreira MT, Feijoo G, Lema JM (2012) Mass transfer enhancement by the addition of surfactant in a two phase partitioning bioreactor for the degradation of anthracene by laccase. Chem Eng Trans 27:187–192

    Google Scholar 

  • Arca-Ramos A, Eibes G, Moreira MT, Feijoo G, Lema JM (2014) Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chem Eng J 240:281–289

    Article  CAS  Google Scholar 

  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34(13):2804–2809

  • Arca-Ramos A, Eibes G, Feijoo G, Lema JM, Moreira MT (2015) Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Biochem Eng J 93:289–293

    Article  CAS  Google Scholar 

  • Badawi AF, Cavalieri EL, Rogan EG (2000) Effect of chlorinated hydrocarbons on expression of cytochrome P450 1A1, 1A2 and 1B1 and 2- and 4-hydroxylation of 17β-estradiol in female Sprague–Dawley rats. Carcinogenesis 21(8):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Battaini G, Monzani E, Casella L, Lonardi E, Tepper AWJW, Canters GW, Bubacco L (2002) Tyrosinase-catalyzed oxidation of fluorophenols. J Biol Chem 277(47):44606–44612

  • Bhandari A, Xu F (2001) Impact of peroxidase addition on the sorption–desorption behavior of phenolic contaminants in surface soils. Environ Sci Technol 35(15):3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26(10):1876–1881

    Article  CAS  Google Scholar 

  • Bollag, J. M. and J. Dec (1998). Use of plant material for the removal of pollutants by polymerization and binding to humic substances, Center for Bioremediation and Detoxification, Environmental Resources Research Institute

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54(6):751–758

  • Canas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28(6):694–705

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4(3):331–338

    Article  CAS  Google Scholar 

  • Chang Y-T, Lee J-F, Liu K-H, Liao Y-F, Yang V (2015) Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. Environ Sci Pollut Res 1–12

  • Chen J, Zheng R-C, Zheng Y-G, Shen Y-C (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

  • Chen Z, Li H, Peng A, Gao Y (2014) Oxidation of polycyclic aromatic hydrocarbons by horseradish peroxidase in water containing an organic cosolvent. Environ Sci Pollut Res 21(18):10696–10705

  • Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45(24):10611–10618

    Article  CAS  PubMed  Google Scholar 

  • da Silva LV, Tavares APM, Kameda E, Macedo EA, Coelho MAZ, Amaral PFF (2013) Factors affecting water colour removal by tyrosinase. Int J Environ Stud 70(2):316–326

  • Davila-Vazquez G, Tinoco R, Pickard MA, Vazquez-Duhalt R (2005) Transformation of halogenated pesticides by versatile peroxidase from Bjerkandera adusta. Enzym Microb Technol 36(2–3):223–231

  • de Souza ML, Sadowsky MJ, Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol 178(16):4894–900

  • Demarche P, Junghanns C, Nair RR, Agathos SN (2012) Harnessing the power of enzymes for environmental stewardship. Biotechnol Adv 30(5):933–953

  • Di Martino C, López NI, Raiger Iustman LJ (2012) Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int Biodeterior Biodegrad 67:15–20

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48(3):270–282

    Article  CAS  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

  • Eibes G, Lú-Chau T, Feijoo G, Moreira MT, Lema JM (2005) Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzym Microb Technol 37(4):365–372

    Article  CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64(3):408–414

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, López C, Moreira MT, Feijoo G, Lema JM (2007a) Strategies for the design and operation of enzymatic reactors for the degradation of highly and poorly soluble recalcitrant compounds. Biocatal Biotransform 25(2–4):260–268

    Article  CAS  Google Scholar 

  • Eibes G, Moreira MT, Feijoo G, Daugulis AJ, Lema JM (2007b) Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere 66(9):1744–1751

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, Moreira MT, Feijoo G, Lema JM (2008) Enzymatic degradation of low soluble compounds in monophasic water: solvent reactors. Kinetics and modeling of anthracene degradation by MnP. Biotechnol Bioeng 100(4):619–626

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, McCann C, Pedezert A, Moreira MT, Feijoo G, Lema JM (2010) Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a two-phase partitioning bioreactor. Biochem Eng J 51(1–2):79–85

    Article  CAS  Google Scholar 

  • Enayatzamir K, Tabandeh F, Yakhchali B, Alikhani HA, Rodríguez Couto S (2009) Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes. J Hazard Mater 169(1–3):176–181

  • EPA, U. (1996). A citizen’s guide to solvent extraction. Technology Fact Sheet

  • EPA, U. (1998). Terra Kleen Response Group, Inc. Solvent extraction technology. Innovative Technology Evaluation Report, United States Environmental Protection Agency

  • Fan B, Zhao Y, Mo G, Ma W, Wu J (2013) Co-remediation of DDT-contaminated soil using white rot fungi and laccase extract from white rot fungi. J Soils Sediments 13(7):1232–1245

    Article  CAS  Google Scholar 

  • Field JA, Vledder RH, van Zelst JG, Rulkens WH (1996) The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: water mixtures. Enzym Microb Technol 18(4):300–308

    Article  CAS  Google Scholar 

  • Flanders C, Dec J, Bollag J-M (1999) Horseradish-mediated binding of 2,4-dichlorophenol to soil. Bioremed J 3(4):315–321

    Article  CAS  Google Scholar 

  • Franciscon E, Grossman MJ, Paschoal JAR, Reyes FGR, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus 1(1):37

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35(4):339–354

    Article  CAS  Google Scholar 

  • Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142–142

  • Gupta MN, Mukherjee J (2013) Enzymology: some paradigm shifts over the years. Curr Sci 104(9):1178–1186

    CAS  Google Scholar 

  • Hari Krishna S (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20(3–4):239–267

    Article  CAS  Google Scholar 

  • Huang, Q. (2013). Enzyme composition and methods to transform perfluoroalkyl compounds in soil and/or groundwater. US, Google Patents

  • Janikowski TB, Velicogna D, Punt M, Daugulis AJ (2002) Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Appl Microbiol Biotechnol 59(2–3):368–376

    CAS  PubMed  Google Scholar 

  • Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J (2006) Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45(40):12380–12391

  • Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Bio/Technol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kang J (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Karim Z, Husain Q (2010) Removal of anthracene from model wastewater by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor. J Mol Catal B Enzym 66(3–4):302–310

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25(1):75–84

  • Kennedy J, O’Leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson ADW (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111(4):787–799

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71(2):95–122

    Article  Google Scholar 

  • Khodadoust A, Sorial G, Wilson G, Suidan M, Griffiths R, Brenner R (1999) Integrated system for remediation of contaminated soils. J Environ Eng 125(11):1033–1041

    Article  CAS  Google Scholar 

  • Kim HJ, Suma Y, Lee SH, Kim J-A, Kim HS (2012) Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal. J Mol Catal B Enzym 83:8–15

    Article  CAS  Google Scholar 

  • Kirchhoff MM (2003) Promoting green engineering through green chemistry. Environ Sci Technol 37(23):5349–5353

    Article  CAS  PubMed  Google Scholar 

  • Kohyama E, Yoshimura A, Aoshima D, Yoshida T, Kawamoto H, Nagasawa T (2006) Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl Microbiol Biotechnol 72(3):600–606

  • Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: Biotechnological applications. Biotechnol J 8(1):32–45

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63(9):3691–3694

  • Kumara S, Mathura A, Singha V, Nandya S, Khareb SK, Negi S (2012) Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresour Technol 120:300–304

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler H-PE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microb Mol Biol Rev: MMBR 74(1):58–80

  • Lehr, J. H. (2004). Wiley’s Remediation Technologies Handbook: Major Contaminant Chemicals and Chemical Groups, John Wiley & Sons

  • Levin L, Viale A, Forchiassin A (2003) Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int Biodeterior Biodegrad 52(1):1–5

    Article  CAS  Google Scholar 

  • Liedekerke, M. v., G. Prokop, S. Rabl-Berger, M. Kibblewhite and G. Louwagie (2014). Progress in the management of contaminated sites in Europe. JRC Reference Reports, Joint Research Centre of European Comission: 68

  • Longoria A, Tinoco R, Vázquez-Duhalt R (2008) Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72(3):485–490

  • Lynch JC, Brannon JM, Delfino JJ (2002) Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Chemosphere 47(7):725–734

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Zhu L, Wang J, Wang J, Xie H, Su J, Zhang Q, Shao B (2011) Enhancement of atrazine degradation by crude and immobilized enzymes in two agricultural soils. Environ Earth Sci 64(3):861–867

    Article  CAS  Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101(7):2331–2350

  • Majid A, Argue S, Sparks BD (2002) Removal of Aroclor 1016 from contaminated soil by solvent extraction soil agglomeration process. J Environ Eng Sci 1(1):59–64

    Article  CAS  Google Scholar 

  • Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L (2011) Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Arch Biochem Biophys 505(1):67–74

  • Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • Maté D, García-Ruiz E, Camarero S, Alcalde M (2011) Directed evolution of fungal laccases. Curr Genomics 12(2):113–122

    Article  PubMed Central  PubMed  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS Microbiol Lett 206(1):75–79

  • Murena F, Gioia F (2009) Solvent extraction of chlorinated compounds from soils and hydrodechlorination of the extract phase. J Hazard Mater 162(2–3):661–667

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M, Damborský J (2005) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl Environ Microbiol 71(4):2183–2185

  • Nardella A, Massetti F, Sisto R, Tomaciello R (1999) Clean-up of polluted wet soils by solvent extraction. Environ Prog 18(4):243–249

    Article  CAS  Google Scholar 

  • O’Driscoll, K., R. Sambrotto, R. Difilippo and P. Piccillo (2013). Bioremediation of persistent organic pollutants using thermophilic bacteria, Google Patents

  • Palomo M, Bhandari A (2005) Time-dependent sorption–desorption behavior of 2,4-dichlorophenol and its polymerization products in surface soils. Environ Sci Technol 39(7):2143–2151

    Article  CAS  PubMed  Google Scholar 

  • Palomo M, Bhandari A (2006) Impact of aging on the formation of bound residues after peroxidase-mediated treatment of 2,4-DCP contaminated soils. Environ Sci Technol 40(10):3402–3408

    Article  CAS  PubMed  Google Scholar 

  • Palomo M, Bhandari A (2011) Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils. J Environ Qual 40(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Park BK, Kim JE (2006) Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol 50(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutri 10:333–353

    Google Scholar 

  • Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162

    Article  CAS  PubMed  Google Scholar 

  • Rasekh B, Khajeh K, Ranjbar B, Mollania N, Almasinia B, Tirandaz H (2014) Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents. Eng Life Sci 14(4):442–448

    Article  CAS  Google Scholar 

  • Rayu S, Karpouzas D, Singh B (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23(6):917–926

    Article  CAS  PubMed  Google Scholar 

  • Regalado C, García-Almendárez B, Duarte-Vázquez M (2004) Biotechnological applications of peroxidases. Phytochem Rev 3(1–2):243–256

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rulkens WH, Bruning H, van Hasselt HJ, Rienks J, van Veen HJ, Terlingen JPM (1998) Design of a solvent extraction process for PAH-contaminated sediments: the wau-acetone process. Water Sci Technol 37(6–7):411–418

    Article  CAS  Google Scholar 

  • Scott C, Pandey G, Hartley C, Jackson C, Cheesman M, Taylor M, Pandey R, Khurana J, Teese M, Coppin C, Weir K, Jain R, Lal R, Russell R, Oakeshott J (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48(1):65–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott C, Begley C, Taylor MJ, Pandey G, Momiroski V, French N, Brearley C, Kotsonis SE, Selleck MJ, Carino FA, Bajet CM, Clarke C, Oakeshott JG, Russell RJ (2011) Free-enzyme bioremediation of pesticides. Pestic Mitigation Strategies Surf Water Qual, Am Chem Soc 1075:155–174

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54(4):809–818

    Article  CAS  Google Scholar 

  • Shannon MJ, Bartha R (1988) Immobilization of leachable toxic soil pollutants by using oxidative enzymes. Appl Environ Microbiol 54(7):1719–1723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silva A, Delerue-Matos C, Fiúza A (2005) Use of solvent extraction to remediate soils contaminated with hydrocarbons. J Hazard Mater 124(1–3):224–229

    Article  CAS  PubMed  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Micro 7(2):156–164

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Cabrera ML, Radcliffe DE, Zhang H, Huang Q (2015) Laccase mediated transformation of 17β-estradiol in soil. Environ Pollut 197:28–35

    Article  CAS  PubMed  Google Scholar 

  • Sirotkina M, Lyagin I, Efremenko E (2012) Hydrolysis of organophosphorus pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH. Int Biodete Biodegrad 68:18–23

    Article  CAS  Google Scholar 

  • Smith AE (1992) A review of the extraction of herbicide residues from aged Saskatchewan field soils. Int J Environ Anal Chem 46(1–3):111–116

    Article  CAS  Google Scholar 

  • Stolzenburg, T. R. and M. D. Duner (1999). Method for degrading recalcitrant organic contaminants. I. RMT. US, Google Patents. 5,994,121

  • Sutherland TD, Horne I, Weir KM, Coppin CW, Williams MR, Selleck M, Russell RJ, Oakeshott JG (2004) Enzymatic bioremediation: from enzyme discovery to applications. Clin Exp Pharmacol Physiol 31(11):817–821

    Article  CAS  PubMed  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79(8):2692–2702

  • Tanaka T, Tonosaki T, Nose M, Tomidokoro N, Kadomura N, Fujii T, Taniguchi M (2001) Treatment of model soils contaminated with phenolic endocrine-disrupting chemicals with laccase from Trametes sp. in a rotating reactor. J Biosci Bioeng 92(4):312–316

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Nose M, Endo A, Fujii T, Taniguchi M (2003) Treatment of nonylphenol with laccase in a rotating reactor. J Biosci Bioeng 96(6):541–546

    Article  CAS  PubMed  Google Scholar 

  • Tomei MC, Daugulis AJ (2013) Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Rev Environ Sci Technol 43(20):2107–2139

    Article  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46(1):1–15

    Article  CAS  Google Scholar 

  • Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53(2):230–234

  • Van Aken B, Hofrichter M, Scheibner K, Hatakka A, Naveau H, Agathos S (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10(2):83–91

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y (2000) Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil. Biotechnol Prog 16(6):966–972

    Article  CAS  PubMed  Google Scholar 

  • Vinson R, Garret K (2000) Enzyme-enhanced bioremediation at Thule Air Base, Greenland. Fed Facilities Environ J 10(4):39–49

    Article  Google Scholar 

  • Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzym Res 2014:21

  • Wang P, Woodward CA, Kaufman EN (1999) Poly(ethylene glycol)-modified ligninase enhances pentachlorophenol biodegradation in water solvent mixtures. Biotechnol Bioeng 64(3):290–297

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Si T, Zhao H (2012) Biocatalyst development by directed evolution. Bioresour Technol 115:117–125

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40(3):789–796

    Article  CAS  Google Scholar 

  • Wu Y, Jiang Y, Jiao J, Liu M, Hu F, Griffiths BS, Li H (2014) Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies. Colloids Surf B: Biointerfaces 114:342–348

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Xu B, Ding J, Liu L, Zhang X, Li J, Huang Z (2013) Heterologous expression and characterization of a malathionhydrolyzing carboxylesterase from a thermophilic bacterium, Alicyclobacillus tengchongensis. Biotechnol Lett 35(8):1283–1289

  • Xu F, Bhandari A (2003a) Retention and distribution of 1-naphthol and naphthol polymerization products on surface soils. J Environ Eng 129(11):1041–1050

    Article  CAS  Google Scholar 

  • Xu F, Bhandari A (2003b) Retention and extractability of phenol, cresol, and dichlorophenol exposed to two surface soils in the presence of horseradish peroxidase enzyme. J Agric Food Chem 51(1):183–188

    Article  CAS  PubMed  Google Scholar 

  • Yap CL, Gan S, Ng HK (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177(1–3):28–41

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dong X, Jiang Z, Cao B, Ge S, Hu M (2013a) Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health. Environ Sci Pollut Res Int 20(8):5773–5780

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zeng Z, Zeng G, Liu X, Chen M, Liu L, Liu Z, Xie G (2013b) Enzyme–substrate binding landscapes in the process of nitrile biodegradation mediated by nitrile hydratase and amidase. Appl Biochem Biotechnol 170(7):1614–1623

  • Zhao Y, Yi X (2010) Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi. Int J Environ Res Public Health 7(4):1612–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7(2):359–366

    Article  CAS  Google Scholar 

  • Zimmerman A, Ahn M-Y (2011) Organo-mineral–enzyme interaction and soil enzyme activity. Soil Enzymology 22:271–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Science and Innovation (MICINN, CTQ2013-44762-R). The authors belong to the Galician Competitive Research Group GRC 2013–032, program co-funded by FEDER. Gemma Eibes thanks Xunta de Galicia for her postdoctoral grant (I2C Program). Adriana Arca thanks the Spanish Ministry of Education for the FPU grant AP2010-2086.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Eibes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eibes, G., Arca-Ramos, A., Feijoo, G. et al. Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 99, 8815–8829 (2015). https://doi.org/10.1007/s00253-015-6872-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6872-y

Keywords

Navigation