Skip to main content
Log in

Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There are short cationic and tryptophan-rich antifungal peptides such as the hexapeptide PAF26 (RKKWFW) that have selective toxicity and cell penetration properties against fungal cells. This study demonstrates that concatemeric peptides with tandem repeats of the heptapeptide PAF54 (which is an elongated PAF26 sequence) show increased fungistatic and bacteriostatic activities while maintaining the absence of hemolytic activity of the monomer. The increase in antimicrobial activity of the double-repeated PAF sequences (diPAFs), compared to the nonrepeated PAF, was higher (4–8-fold) than that seen for the triple-repeated sequences (triPAFs) versus the diPAFs (2-fold). However, concatemerization diminished the fungicidal activity against quiescent spores of the filamentous fungus Penicillium digitatum. Peptide solubility and sensitivity to proteolytic degradation were affected by the design of the concatemers: incorporation of the AGPA sequence hinge to separate PAF54 repeats increased solubility while the C-terminal addition of the KDEL sequence decreased in vitro stability. These results led to the design of the triPAF sequence PAF102 of 30 amino acid residues, with increased antimicrobial activity and minimal inhibitory concentration (MIC) value of 1–5 μM depending on the fungus. Further characterization of the mode-of-action of PAF102 demonstrated that it colocalizes first with the fungal cell wall, it is thereafter internalized in an energy dependent manner into hyphal cells of the filamentous fungus Fusarium proliferatum, and finally kills hyphal cells intracellularly. Therefore, PAF102 showed mechanistic properties against fungi similar to the parental PAF26. These observations are of high interest in the future development of PAF-based antimicrobial molecules optimized for their production in biofactories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badosa E, Moiset G, Montesinos L, Talleda M, Bardaji E, Feliu L, Planas M, Montesinos E (2013) Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLoS ONE 8:e85515

    Article  PubMed Central  PubMed  Google Scholar 

  • Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latgé JP (2012) Hydrophobins-unique fungal proteins. PLoS Pathog 8:e1002700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the 24 individual omission analogs of melittin. Biochemistry 30:4671–4678

    Article  CAS  PubMed  Google Scholar 

  • Bou Zeidan M, Carmona L, Zara S, Marcos JF (2013) FLO11 gene is involved in the interaction of flor strains of Saccharomyces cerevisiae with a biofilm-promoting synthetic hexapeptide. Appl Environ Microbiol 79:2023–2032

    Article  Google Scholar 

  • Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D, Guiderdoni E, Rossignol M, Badosa E, Montesinos E, San Segundo B, Coca M (2014) Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biol 14:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Campos-Soriano L, San Segundo B (2009) Assessment of blast disease resistance in transgenic PRms rice using a gfp-expressing Magnaporthe oryzae strain. Plant Pathol 58:677–689

    Article  CAS  Google Scholar 

  • Carmona L, Gandía M, López-García B, Marcos JF (2012) Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production. Biochem Biophys Res Commun 417:56–61

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: Identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85:3391–3395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martínez del Pozo A, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    Article  CAS  PubMed  Google Scholar 

  • Company N, Nadal A, La Paz JL, Martínez S, Rasche S, Schillberg S, Montesinos E, Pla M (2014) The production of recombinant cationic α-helical antimicrobial peptides in plant cells induces the formation of protein bodies derived from the endoplasmic reticulum. Plant Biotechnol J 12:81–92

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Lucca AJ, Walsh TJ (1999) Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 43:1–11

    PubMed Central  PubMed  Google Scholar 

  • De Souza Cândido E, e Silva Cardoso MH, Sousa DA, Viana JC, De Oliveira-Júnior NG, Miranda V, Franco OL (2014) The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55:65–78

    Article  PubMed  Google Scholar 

  • Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro A, Roncero MIG (1996) Endopolygalacturonase from Fusarium oxysporum f sp lycopersici: Purification, characterization, and production during infection of tomato plants. Phytopathology 86:1324–1330

    Google Scholar 

  • Duncan VMS, O’Neil DA (2013) Commercialization of antifungal peptides. Fungal Biol Rev 26:156–165

    Article  Google Scholar 

  • Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardají E (2006) Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl Environ Microbiol 72:3302–3308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez CF, Provin EM, Zhu L, Ebbole DJ (2002) Independent and synergistic activity of synthetic peptides against thiabendazole-resistant Fusarium sambucinum. Phytopathology 92:917–924

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Na H, Seo CH, Park Y (2012) Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum. Int J Mol Sci 13:15042–15053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Harries E, Carmona L, Muñoz A, Ibeas JI, Read ND, Gandía M, Marcos JF (2013) Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae. Fungal Genet Biol 58–59:105–115

    Article  PubMed  Google Scholar 

  • Ingham AB, Moore RJ (2007) Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Jang WS, Li XWS, Sun JNN, Edgerton M (2008) The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob Agents Chemother 52:497–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakshminarayanan R, Liu S, Li J, Nandhakumar M, Aung TT, Goh E, Chang JYT, Saraswathi P, Tang C, Safie SRB, Lin LY, Riezman H, Lei Z, Verma CS, Beuerman RW (2014) Synthetic multivalent antifungal peptides effective against fungi. PLoS ONE 9:e87730

    Article  PubMed Central  PubMed  Google Scholar 

  • Latgé JP (2007) The cell wall: A carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  PubMed  Google Scholar 

  • López-García B, Pérez-Payá E, Marcos JF (2002) Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl Environ Microbiol 68:2453–2460

    Article  PubMed Central  PubMed  Google Scholar 

  • López-García B, Veyrat A, Pérez-Payá E, González-Candelas L, Marcos JF (2003) Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int J Food Microbiol 89:163–170

    Article  PubMed  Google Scholar 

  • López-García B, Ubhayasekera W, Gallo RL, Marcos JF (2007) Parallel evaluation of antimicrobial peptides derived from the synthetic PAF26 and the human LL37. Biochem Biophys Res Commun 356:107–113

    Article  PubMed  Google Scholar 

  • López-García B, San Segundo B, Coca M (2012) Antimicrobial peptides as a promising alternative for plant disease protection. In: Rajasekaran K, Cary JW, Jaynes J, Montesinos E (eds) Small wonders: Peptides for disease control. American Chemical Society, Washington, DC, pp 263–294

    Chapter  Google Scholar 

  • Marcos JF, Gandía M (2009) Antimicrobial peptides: to membranes and beyond. Expert Opin Drug Discov 4:659–671

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E, Bardaji E (2008) Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem Biodivers 5:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Muñoz A, López-García B, Marcos JF (2006) Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob Agents Chemother 50:3847–3855

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz A, López-García B, Marcos JF (2007a) Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicillium digitatum. J Agric Food Chem 55:8170–8176

    Article  PubMed  Google Scholar 

  • Muñoz A, López-García B, Pérez-Payá E, Marcos JF (2007b) Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochem Biophys Res Commun 354:172–177

    Article  PubMed  Google Scholar 

  • Muñoz A, Marcos JF, Read ND (2012) Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol Microbiol 85:89–106

    Article  PubMed  Google Scholar 

  • Muñoz A, Gandía M, Harries E, Carmona L, Read ND, Marcos JF (2013a) Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. Fungal Biol Rev 26:146–155

    Article  Google Scholar 

  • Muñoz A, Harries E, Contreras-Valenzuela A, Carmona L, Read ND, Marcos JF (2013b) Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells. PLoS ONE 8:e54813

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M (2012) Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol 12:159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parachin NS, Mulder KC, Viana AAB, Dias SC, Franco OL (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456

    Article  CAS  PubMed  Google Scholar 

  • Piers KL, Brown MH, Hancock REW (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38:2311–2316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebollar A, López-García B (2013) PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae. Mol Plant-Microbe Interact 26:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Rebollar A, Marcos JF, López-García B (2014) Screening of a synthetic peptide combinatorial library to identify inhibitors of the appressorium formation in Magnaporthe oryzae. Biochem Biophys Res Commun 454:1–6

    Article  CAS  PubMed  Google Scholar 

  • Scocchi M, Tossi A, Gennaro R (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 68:2317–2330

    Article  CAS  PubMed  Google Scholar 

  • Viana JFC, Dias SC, Franco OL, Lacorte C (2013) Heterologous production of peptides in plants: Fusion proteins and beyond. Curr Protein Pept Sci 14:568–579

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Wang XM, Teng D, Zhang Y, Mao RY, Wang JH (2014) Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett Appl Microbiol 59:71–78

    Article  CAS  PubMed  Google Scholar 

  • Wilmes M, Cammue BPA, Sahl HG, Thevissen K (2011) Antibiotic activities of host defense peptides: More to it than lipid bilayer perturbation. Nat Prod Rep 28:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants EUI2008-03619 and EUI2008-03769 from “Ministerio de Ciencia e Innovación” (MICINN, Spain). EH was a recipient of a scholarship within the JAE PRE-DOC program (CSIC, EU FEDER funds). We acknowledge the technical assistance of M. José Pascual and Montse Amenós with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Coca or Jose F. Marcos.

Additional information

Belén López-García and Eleonora Harries contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-García, B., Harries, E., Carmona, L. et al. Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides. Appl Microbiol Biotechnol 99, 8011–8021 (2015). https://doi.org/10.1007/s00253-015-6541-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6541-1

Keywords

Navigation