Skip to main content
Log in

Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of l-arginine that is inhibited by its end product l-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized l-arginine producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Briozzo P, Evrin C, Meyer P, Assairi L, Joly N, Bārzu O, Gilles A-M (2005) Structure of Escherichia coli UMP kinase differs from that of other nucleoside monophosphate kinases and sheds new light on enzyme regulation. J Biol Chem 280(27):25533–25540. doi:10.1074/jbc.M501849200

    Article  CAS  PubMed  Google Scholar 

  • Chen YM, Ferrar TS, Lohmeir-Vogel E, Morrice N, Mizuno Y, Berenger B, Ng KK, Muench DG, Moorhead GB (2006) The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 281(9):5726–5733. doi:10.1074/jbc.M510945200

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Meyer W, Rappert S, Sun J, Zeng A-P (2011) Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 77(13):4352–4360. doi:10.1128/AEM. 02912-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chipman DM, Shaanan B (2001) The ACT domain family. Curr Opin Struct Biol 11(6):694–700. doi:10.1016/S0959-440X(01)00272-X

    Article  CAS  PubMed  Google Scholar 

  • Christelle B, Eduardo BDO, Latifa C, Elaine-Rose M, Bernard M, Evelyne R-H, Mohamed G, Jean-Marc E, Catherine H (2011) Combined docking and molecular dynamics simulations to enlighten the capacity of Pseudomonas cepacia and Candida antarctica lipases to catalyze quercetin acetylation. J Biotechnol 156(3):203–210. doi:10.1016/j.jbiotec.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50(3):314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feher M (2006) Consensus scoring for protein–ligand interactions. Drug Discov Today 11(9):421–428. doi:10.1016/j.drudis.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190(8):3018–3025. doi:10.1128/JB.01831-07

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Murga ML, Ramon-Maiques S, Gil-Ortiz F, Fita I, Rubio V (2002) Towards structural understanding of feedback control of arginine biosynthesis: cloning and expression of the gene for the arginine-inhibited N-acetyl-L-glutamate kinase from Pseudomonas aeruginosa, purification and crystallization of the recombinant enzyme and preliminary X-ray studies. Acta Crystallogr D Biol Crystallogr 58(6):1045–1047. doi:10.1107/S0907444902005234

    Article  PubMed  Google Scholar 

  • Fernández-Murga ML, Gil-Ortiz F, Llácer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-L-glutamate kinase. J Bacteriol 186(18):6142–6149. doi:10.1128/JB.186.18.6142-6149.2004

    Article  PubMed Central  PubMed  Google Scholar 

  • Haas D, Leisinger T (1975) N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Eur J Biochem 52(2):377–393. doi:10.1111/j.1432-1033.1975.tb04005.x

    Article  CAS  PubMed  Google Scholar 

  • Komarova N, Kamentsev J, Solomonova A, Anufrieva R (2004) Determination of amino acids in fodders and raw materials using capillary zone electrophoresis. J Chromatogr B 800(1):135–143. doi:10.1016/j.jchromb.2003.08052

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Liithy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85. doi:10.1038/356083a0

    Article  Google Scholar 

  • Llácer JL, Contreras A, Forchhammer K, Marco-Marín C, Gil-Ortiz F, Maldonado R, Fita I, Rubio V (2007) The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci U S A 104(45):17644–17649. doi:10.1073/pnas.0705987104

    Article  PubMed Central  PubMed  Google Scholar 

  • Maheswaran M, Urbanke C, Forchhammer K (2004) Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 279(53):55202–55210. doi:10.1074/jbc.M410971200

    Article  CAS  PubMed  Google Scholar 

  • Marco-Marı́n C, Ramón-Maiques S, Tavárez S, Rubio V (2003) Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase. J Mol Biol 334(3):459–476. doi:10.1016/j.jmb.2003.09.038

    Article  PubMed  Google Scholar 

  • Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10(3):329–342. doi:10.1016/S0969-2126(02)00721-9

    Article  PubMed  Google Scholar 

  • Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356(3):695–713. doi:10.1016/j.jmb.2005.11.079

    Article  PubMed  Google Scholar 

  • Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet J-N, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(1):99–108. doi:10.1099/13500872-142-1-99

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan R, Ragunathan P, Kuramitsu S, Yokoyama S, Kumarevel T, Ponnuraj K (2012) The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme. Biochem Biophys Res Commun 420(3):692–697. doi:10.1016/j.bbrc.2012.03.072

    Article  CAS  PubMed  Google Scholar 

  • Tahanejad FS, Naderi-Manesh H, Habibinejad B, Mahmoudian M (2000) Homology-based molecular modelling of PLP-dependent histidine decarboxylase from Morganella morganii. Eur J Med Chem 35(6):567–576

    Article  CAS  PubMed  Google Scholar 

  • Van der Rest M, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545. doi:10.1007/s002530051557

    Article  PubMed  Google Scholar 

  • Xu M, Rao Z, Dou W, Jin J, Xu Z (2012a) Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum. Curr Microbiol 64(2):164–172. doi:10.1007/s00284-011-0042-y

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Rao Z, Dou W, Yang J, Jin J, Xu Z (2012b) Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids 43(1):255–266. doi:10.1007/s00726-011-1069-x

    Article  PubMed  Google Scholar 

  • Yang X, Welch JL, Arnold JJ, Boehr DD (2010) Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry 49(43):9361–9371. doi:10.1021/bi100833r

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Professors Zheng and Lin and Dr. Liang for the encouragement and guidance in this study. The authors are grateful for the financial support of the National Natural Science Foundation of China (31171633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiping Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, H., Tian, H. et al. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum . Appl Microbiol Biotechnol 99, 7527–7537 (2015). https://doi.org/10.1007/s00253-015-6469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6469-5

Keywords

Navigation