Skip to main content
Log in

Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ethanologenic bacterium Zymomonas mobilis is usually tolerant to high concentrations of glucose. The addition of sorbitol decreases the lag phase and increases ethanol yield and productivity of the bacteria in high glucose concentrations. The molecular mechanisms of adaptation to high glucose concentrations and the effect of sorbitol are still unclear. In this study, microarray analysis was used to study the global transcriptional adaptation responses of Z. mobilis to high glucose concentrations. A total of 235 genes were differentially expressed when 220 g/L glucose was added with or without 10 mM sorbitol. These genes are involved in diverse aspects of cell metabolism and regulation, including membrane transporters, nitrogen metabolism, and plasmid-encoded genes. However, most differentially expressed genes were downregulated when sorbitol was added. Notably, the transcription of almost all genes involved in the Entner-Doudoroff and ethanol production pathways was not significantly affected. In addition, a prophage and a nitrogen-fixation cluster were significantly induced. These results revealed that Z. mobilis cells responded to high glucose concentrations by regulating the transcriptional levels of genes related to membrane channels and transporters, stress response mechanisms, and metabolic pathways. These data provide insight into the intracellular adaptation responses to high glucose concentrations and reveal strategies to engineer efficient ethanol fermentation in Z. mobilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Algar EM, Scopes RK (1985) Studies on cell-free metabolism: ethanol production by extracts of Zymomonas mobilis. J Biotechnol 2:275–287

    Article  CAS  Google Scholar 

  • Alvarez-Ordóñez A, Fernández A, Bernardo A, López M (2010) Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. Int J Food Microbiol 136:278–282

    Article  PubMed  Google Scholar 

  • An H, Scopes RK, Rodriguez M, Keshav KF, Ingram LO (1991) Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein. J Bacteriol 173:5975–5982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin S, Henderson P (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471

    Article  CAS  PubMed  Google Scholar 

  • Barnell WO, Yi KC, Conway T (1990) Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol 172:7227–7240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem 279:47939–47951

    Article  CAS  PubMed  Google Scholar 

  • Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A 87:862–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao Y, Vogel J (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13:24–33

    Article  CAS  PubMed  Google Scholar 

  • Christogianni A, Douka E, Koukkou AI, Hatziloukas E, Drainas C (2005) Transcriptional analysis of a gene cluster involved in glucose tolerance in Zymomonas mobilis: evidence for an osmoregulated promoter. J Bacteriol 187:5179–5188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Commichau FM, Forchhammer K, Stülke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172

    Article  CAS  PubMed  Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27

    Article  CAS  PubMed  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694:149–161

    Article  CAS  PubMed  Google Scholar 

  • DiMarco AA, Romano AH (1985) D-Glucose transport system of Zymomonas mobilis. Appl Environ Microbiol 49:151–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Douka E, Koukkou AI, Vartholomatos G, Frillingos S, Papamichael EM, Drainas C (1999) A Zymomonas mobilis mutant with delayed growth on high glucose concentrations. J Bacteriol 181:4598–4604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496

    Article  CAS  Google Scholar 

  • Goodman AE, Rogers PL, Skotnicki ML (1982) Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol 44:496–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH (2012a) Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol Biofuels 5:75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH (2012b) Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol 95:189–199

    Article  CAS  PubMed  Google Scholar 

  • Holland IB, Blight MA, Kenny B (1990) The mechanism of secretion of hemolysin and other polypeptides from gram-negative bacteria. J Bioenerg Biomembr 22:473–491

    Article  CAS  PubMed  Google Scholar 

  • Jeon YJ, Xun Z, Su P, Rogers PL (2012) Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl Microbiol Biotechnol 93:2513–2518

    Article  CAS  PubMed  Google Scholar 

  • Kogoma T, Yura T (1992) Sensitization of Escherichia coli cells to oxidative stress by deletion of the rpoH gene, which encodes the heat shock sigma factor. J Bacteriol 174:630–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawford HG, Rousseau JD (2002) Steady-state measurements of lactic acid production in a wild-type and a putative D-lactic acid dehydrogenase-negative mutant of Zymomonas mobilis. Appl Biochem Biotechnol 98–100:215–228

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loos H, Krämer R, Sahm H, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyness E, Doelle HW (1981) Fermentation pattern of sucrose to ethanol conversions by Zymomonas mobilis. Biotechnol Bioeng 23:1449–1460

    Article  CAS  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15:795–802

    Article  CAS  PubMed  Google Scholar 

  • Parker C, Peekhaus N, Zhang X, Conway T (1997) Kinetics of sugar transport and phosphorylation influence glucose and fructose cometabolism by Zymomonas mobilis. Appl Environ Microbiol 63:3519–3525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poolman B, Blount P, Folgering JH, Friesen RH, Moe PC, Heide T (2002) How do membrane proteins sense water stress? Mol Microbiol 44:889–902

    Article  CAS  PubMed  Google Scholar 

  • Rogers P, Lee KJ, Tribe D (1979) Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol Lett 1:165–170

    Article  CAS  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  PubMed  Google Scholar 

  • Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33:330–338

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  CAS  PubMed  Google Scholar 

  • Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M (2013) Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 6:180

    Article  PubMed Central  PubMed  Google Scholar 

  • Struch T, Neuss B, Bringer-Meyer S, Sahm H (1991) Osmotic adjustment of Zymomonas mobilis to concentrated glucose solutions. Appl Microbiol Biotechnol 34:518–523

    Article  CAS  Google Scholar 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsui HCT, Leung HCE, Winkler ME (1994) Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13:35–49

    Article  CAS  PubMed  Google Scholar 

  • Viikari L (1984) Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Appl Microbiol Biotechnol 19:252–255

    Article  CAS  Google Scholar 

  • Viikari L, Berry DR (1988) Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol 7:237–261

    Article  CAS  Google Scholar 

  • Waller AS, Hug LA, Mo K, Radford DR, Maxwell KL, Edwards EA (2012) Transcriptional analysis of a Dehalococcoides-containing microbial consortium reveals prophage activation. Appl Environ Microbiol 78:1178–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Weisser P, Kramer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:3351–3354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S, Land ML, Klingeman DM, Pelletier DA, Lu T-YS, Martin SL, Guo H-B, Smith JC, Brown SD (2010a) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 107:10395–10400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S, Pappas KM, Hauser LJ, Land ML, Chen GL, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, Klingeman DM, Chang YJ, Samatova NF, Brown SD (2009a) Improved genome annotation for Zymomonas mobilis. Nat Biotechnol 27:893–894

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Pan CL, Tschaplinski TJ, Hurst GB, Engle NL, Zhou W, Dam P, Xu Y, Rodriguez M, Dice L, Johnson CM, Davison BH, Brown SD (2013) Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS ONE 8:e68886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SH, Pelletier DA, Lu TYS, Brown SD (2010b) The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol 10:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang SH, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M, Brown SD (2009b) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaprasis A, Brill J, Thüring M, Wünsche G, Heun M, Barzantny H, Hoffmann T, Bremer E (2013) Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides. Appl Environ Microbiol 79:576–587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S (2011) Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of Enterobacteria. Front Microbiol 2:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang LH, Lang YJ, Wang CX, Nagata S (2008) Promoting effect of compatible solute ectoine on the ethanol fermentation by Zymomonas mobilis CICC10232. Proc Biochem 43:642–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research support was provided by grants from National Technology Support of China with project No. 2007BAC18B04.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Shao, H., Cao, Q. et al. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis . Appl Microbiol Biotechnol 99, 2009–2022 (2015). https://doi.org/10.1007/s00253-014-6342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6342-y

Keywords

Navigation