Skip to main content
Log in

A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The methylotrophic yeast Pichia pastoris is an attractive expression system due to its ability to secrete large amounts of recombinant protein, with the potential for glycosylation. Advances in glycoengineering of P. pastoris have successfully demonstrated the humanization of both the N- and O-linked glycosylation pathways in this organism. However, in certain cases, the presence of O-linked glycans on a therapeutic protein may not be desirable. Recently, we have reported the in vitro utility of jack bean α-1,2/3/6-mannosidase to remove O-linked mannose from intact undenatured glycoproteins produced in glycoengineered P. pastoris. However, one caveat of this strategy is that jack bean mannosidase has yet to be cloned and as such is only available as crude cellular extracts. This raises several concerns for using this reagent to treat large preparations of therapeutic proteins generated in P. pastoris. Therefore, we postulated that lysosomal mannosidases which have been cloned and demonstrated to have similar activities to jack bean mannosidase on N-linked glycans would also process O-linked glycans in a similar fashion. To this end, we screened a panel of recombinant lysosomal mannosidases from different organisms and identified several which cannot only reduce extended O-linked mannose chains but which can also hydrolyze the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, not only do we show for the first time the utility of lysosomal mannosidase for O-linked mannose processing, but since this is a recombinant enzyme, it has several benefits over the use of crude jack bean mannosidase extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • al Daher S, de Gasperi R, Daniel P, Hall N, Warren CD, Winchester B (1991) The substrate-specificity of human lysosomal alpha-D-mannosidase in relation to genetic alpha-mannosidosis. Biochem J 277:743–751

    PubMed Central  PubMed  Google Scholar 

  • Aronson NN Jr, Kuranda MJ (1989) Lysosomal degradation of Asn-linked glycoproteins. FASEB J 3:2615–2622

    CAS  PubMed  Google Scholar 

  • Asami Y, Nagano H, Ikematsu S, Murasugi A (2000) An approach to the removal of yeast specific O-linked oligo-mannoses from human midkine expressed in Pichia pastoris using site-specific mutagenesis. J Biochem 128:823–826

    Article  CAS  PubMed  Google Scholar 

  • Berg T, King B, Meikle PJ, Nilssen O, Tollersrud OK, Hopwood JJ (2001) Purification and characterization of recombinant human lysosomal alpha-mannosidase. Mol Genet Metab 73:18–29

    Article  CAS  PubMed  Google Scholar 

  • Bergwerff AA, Stark W, Fendrich G, Knecht R, Blommers MJ, Maerki W, Kragten EA, van Oostrum J (1998) Identification of Man alpha1-3Man alpha1-2Man and Man-linked phosphate on O-mannosylated recombinant leech-derived tryptase inhibitor produced by Saccharomyces cerevisiae and determination of the solution conformation of the mannosylated polypeptide. Eur J Biochem 253:560–575

    Article  CAS  PubMed  Google Scholar 

  • Bewley MC, Tam BM, Grewal J, He SM, Shewry S, Murphy MEP, Mason AB, Woodworth RC, Baker EN, MacGillivray RTA (1999) X-ray crystallography and mass spectroscopy reveal that the N- lobe of human transferrin expressed in Pichia pastoris is folded correctly but is glycosylated on serine-32. Biochemistry 38:2535–2541

    Article  CAS  PubMed  Google Scholar 

  • Boraston AB, Sandercock L, Warren RA, Kilburn DG (2003) O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol 5:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bretthauer RK (2007) Characterization of O-linked saccharides on glycoproteins. Methods Mol Biol 389:107–118

    Article  CAS  PubMed  Google Scholar 

  • Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi BK, Warburton S, Lin H, Patel R, Boldogh I, Meehl M, d’Anjou M, Pon L, Stadheim TA, Sethuraman N (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682

    Article  CAS  PubMed  Google Scholar 

  • Cukan MC, Hopkins D, Burnina I, Button M, Giaccone E, Houston-Cummings NR, Jiang Y, Li F, Mallem M, Mitchell T, Moore R, Nylen A, Prinz B, Rios S, Sharkey N, Zha D, Hamilton S, Li H, Stadheim TA (2012) Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris. J Immunol Methods 386:34–42

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, Miele RG, Liang H, Grella DK, Sim KL, Castellino FJ, Bretthauer RK (1998) O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 28:39–45

    CAS  PubMed  Google Scholar 

  • Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750

    Article  CAS  PubMed  Google Scholar 

  • Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gentzsch M, Tanner W (1997) Protein-O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7:481–486

    Article  CAS  PubMed  Google Scholar 

  • Gnanesh Kumar BS, Pohlentz G, Schulte M, Mormann M, Siva KN (2014) Jack bean alpha-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24:252–261

    Article  CAS  PubMed  Google Scholar 

  • Gomathinayagam S, Hamilton SR (2014) In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 98:2545–2554

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, Schwartz S, Du M, Sharkey NJ, Bobrowicz P, Wildt S, Li H, Stadheim TA, Nett JH (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Hanisch FG (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149

    Article  CAS  PubMed  Google Scholar 

  • Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, Mitchell T, Nett JH, Sharkey NJ, Stadheim TA, Li H, Hamilton SR (2011) Elimination of beta-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Ibatullin FM, Golubev AM, Firsov LM, Neustroev KN (1993) A model for cleavage of O-glycosidic bonds in glycoproteins. Glycoconj J 10:214–218

    Article  CAS  PubMed  Google Scholar 

  • Letourneur O, Gervasi G, Gaia S, Pages J, Watelet B, Jolivet M (2001) Characterization of Toxoplasma gondii surface antigen 1 (SAG1) secreted from Pichia pastoris: evidence of hyper O-glycosylation. Biotechnol Appl Biochem 33:35–45

    Article  CAS  PubMed  Google Scholar 

  • Li YT (1967) Studies on the glycosidases in jack bean meal I Isolation and properties of alpha-mannosidase. J Biol Chem 242:5474–5480

    CAS  PubMed  Google Scholar 

  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  CAS  PubMed  Google Scholar 

  • Liao YF, Lal A, Moremen KW (1996) Cloning, expression, purification, and characterization of the human broad specificity lysosomal acid alpha-mannosidase. J Biol Chem 271:28348–28358

    Article  CAS  PubMed  Google Scholar 

  • Lommel M, Strahl S (2009) Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–828

    Article  CAS  PubMed  Google Scholar 

  • Malm D, Nilssen O (2008) Alpha-mannosidosis. Orphanet J Rare Dis 3:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Martinez T, Pace D, Brady L, Gerhart M, Balland A (2007) Characterization of a novel modification on IgG2 light chain evidence for the presence of O-linked mannosylation. J Chromatogr A 1156:183–187

    Article  CAS  PubMed  Google Scholar 

  • Nett JH, Gomathinayagam S, Hamilton SR, Gong B, Davidson RC, Du M, Hopkins D, Mitchell T, Mallem MR, Nylen A, Shaikh SS, Sharkey N, Barnard GC, Copeland V, Liu L, Evers R, Li Y, Gray PM, Lingham RB, Visco D, Forrest G, DeMartino J, Linden T, Potgieter TI, Wildt S, Stadheim TA, d’Anjou M, Li H, Sethuraman N (2012) Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris. J Biotechnol 157:198–206

    Article  CAS  PubMed  Google Scholar 

  • O’Leary JM, Radcliffe CM, Willis AC, Dwek RA, Rudd PM, Downing AK (2004) Identification and removal of O-linked and non-covalently linked sugars from recombinant protein produced using Pichia pastoris. Protein Expr Purif 38:217–227

    Article  PubMed  Google Scholar 

  • Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR, Young K, Page M (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978

    Article  CAS  PubMed  Google Scholar 

  • Snaith SM (1975) Characterization of jack-bean alpha-D-mannosidase as a zinc metalloenzyme. Biochem J 147:83–90

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stadheim TA, Li H, Kett W, Burnina IN, Gerngross TU (2008) Use of high-performance anion exchange chromatography with pulsed amperometric detection for O-glycan determination in yeast. Nat Protoc 3:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Swanson SJ, Bethke PC, Jones RL (1998) Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes. Plant Cell 10:685–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trimble RB, Lubowski C, Hauer CR III, Stack R, McNaughton L, Gemmill TR, Kumar SA (2004) Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris. Glycobiology 14:265–274

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan M, Kuntz DA, Rose DR (2009) Human lysosomal alpha-mannosidases exhibit different inhibition and metal binding properties. Protein Sci 18:2242–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Michael Meehl for the P. pastoris produced glycoprotein substrates used in this study, Stephanie Nelson and Nathan Sharkey for their fermentation support, and both Heather Lynaugh and Irina Burnina for their analytical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hamilton.

Additional information

Daniel Hopkins and Sujatha Gomathinayagam contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, D., Gomathinayagam, S. & Hamilton, S.R. A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase. Appl Microbiol Biotechnol 99, 3913–3927 (2015). https://doi.org/10.1007/s00253-014-6189-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6189-2

Keywords

Navigation