Skip to main content
Log in

Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microgravity and simulated microgravity (SMG) have quite significant effects on numerous microbial cellular processes. The effects of SMG on the production of recombinant proteins and transcription profiling in prokaryotic and eukaryotic expression host have been investigated. The present study showed that SMG significantly enhanced the specific productivities and activities of the reporter enzymes PGUS and AtXYN that were expressed in recombinant Pichia pastoris. Proteomic profiling revealed that 21 proteins were significantly up-regulated and 35 proteins were drastically down-regulated at the stationary phase, when the recombinant P. pastoris responded to SMG. Six strongly up-regulated genes, TPX, FBA, PGAM, ENO, SBA1, and AKR-E, involved in the oxidative stress response, methanol metabolism, glycolytic pathway, and protein folding, were selected to analyze their impacts on recombinant protein production by co-overexpression in the shaker flask fermentation. The co-overexpressed strains, particularly TPX, FBA, and PGAM, demonstrated promising results with approximately 2.46-fold, 1.58-fold, and 1.33-fold increases in the specific yields of PGUS compared to the control after 48 h of methanol induction, respectively. In the meantime, the corresponding PGUS specific activities were increased by 2.33-fold, 2.09-fold, and 1.32-fold, respectively. Thiol peroxidase (TPX), which is involved in the oxidative stress response, significantly influenced the transcriptional levels of the reporter gene PGUS. The present study provides valuable information for further exploration of the molecular mechanism of P. pastoris response to SMG and facilitates simulated microgravity for finding novel helper factors to rationally engineer the strains in normal fermentation by using proteomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270. doi:10.1016/0168-1656(92)90074-J

    Article  CAS  Google Scholar 

  • Baker PW, Meyer ML, Leff LG (2004) Escherichia coli growth under modeled reduced gravity. Microgravity Sci Technol 15(4):39–44

    Article  PubMed  Google Scholar 

  • Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:141. doi:10.1186/1752-0509-4-141

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann K, Adelantado N, Lang C, Mattanovich D, Ferrer P (2011) Protein trafficking, ergosterol biosynthesis and membrane physics impact recombinant protein secretion in Pichia pastoris. Microb Cell Factories 10:93. doi:10.1186/1475-2859-10-93

    Article  CAS  Google Scholar 

  • Benoit MR, Li W, Stodieck LS, Lam KS, Winther CL, Roane TM, Klaus DM (2006) Microbial antibiotic production aboard the international space station. Appl Microbiol Biotechnol 70(4):403–411. doi:10.1007/s00253-005-0098-3

    Article  CAS  PubMed  Google Scholar 

  • Boyle D, Montelone B, Cornejo A, Takemoto L (1995) Effects of microgravity upon growth, morphology, and expression of recombinant protein in E. coli. Cosm Res 34:609

    Google Scholar 

  • Crabbé A, Schurr M, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, Nickerson CA (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 77(4):1221–1230. doi:10.1128/AEM. 01582-10

    Article  PubMed  Google Scholar 

  • Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8(3):1380–1392. doi:10.1021/pr8007623

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, Kreil D, Altmann F, Mattanovich D (2010) The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11:207. doi:10.1186/1471-2164-11-207

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng SJ, Li C, Xu XL, Wang XY (2006) Screening strains for directed biosynthesis of β-D-mono-glucuronide-glycyrrhizin and kinetics of enzyme production. J Mol Catal B Enzyme 43:63–67. doi:10.1016/j.molcatb

    Article  CAS  Google Scholar 

  • Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, Rutherford JC, Siu KL, Jin DY, Winge DR, Gladyshev VN (2011) Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A 108(7):2729–2734. doi:10.1073/pnas.1010721108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73:6499–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Factories 9:49. doi:10.1186/1475-2859-9-49

    Article  Google Scholar 

  • Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X (2013) A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour Technol 128:547–552. doi:10.1016/j.biortech

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105(47):18525–18530. doi:10.1073/pnas.0809677105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, Hammond T, Pierson DL (2003) Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 54(1):1–11. doi:10.1016/S0167-7012(03)00018-6

    Article  CAS  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68(2):345–361. doi:10.1128/MMBR. 68.2.345-361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi F, Kaleem I, Lv B, Guo XX, Li C (2011a) Enhancement of recombinant β-glucuronidase production under low-shear modeled microgravity in Pichia pastoris. J Chem Technol Biotechnol 86(4):505–511. doi:10.1002/jctb.2541

    Article  CAS  Google Scholar 

  • Qi F, Wang C, Liu Y, Kaleem I, Li Q, Li C (2011b) Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity. PLoS One 6(11):e26613. doi:10.1371/journal.pone.0026613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson K (2011) Commercial space flight: scientists in space. Nature 476(7361):477–478

    Article  CAS  PubMed  Google Scholar 

  • Sheehan KB, McInnerney K, Purevdorj-Gage B, Altenburg SD, Hyman LE (2007) Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics 8:3. doi:10.1186/1471-2164-8-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephen N (2007) Rotary bioreactor for recombinant protein production. Cell Technol Cell Products 3:567–569

    Google Scholar 

  • Thomas V, Franz S, Anton G (2013) New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol 24(6):1094–1101. doi:10.1016/j.copbio.2013.02.024

    Article  Google Scholar 

  • Vailati A, Cerbino R, Mazzoni S, Takacs CJ, Cannell DS, Giglio M (2011) Fractal fronts of diffusion in microgravity. Nat Commun 2:290. doi:10.1038/ncomms1290

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanz AL, Lünsdorf H, Adnan A, Nimtz M, Gurramkonda C, Khanna N, Rinas U (2012) Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microb Cell Factories 11:103. doi:10.1186/1475-2859-11-103

    Article  CAS  Google Scholar 

  • Xiang L, Qi F, Dai DZ, Li C, Jiang YD (2010) Simulated microgravity affects growth of Escherichia coli and recombinant β-glucuronidase production. Appl Biochem Biotechnol 162(3):654–661. doi:10.1007/s12010-009-8836-0

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Guo M, Zhuang Y, Chu J, Zhang S (2011) Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes. Appl Microbiol Biotechnol 89(4):1127–1135. doi:10.1007/s00253-010-2944-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A704), the Major State Basic Research Development Program of China (973 Program) (No. 2013CB733900), and the Natural Science Foundation of Beijing (No. 2112035).

Conflict of interest

The authors declare that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Additional information

Jie Huangfu and Feng Qi contributed equally to this study

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huangfu, J., Qi, F., Liu, H. et al. Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity. Appl Microbiol Biotechnol 99, 653–665 (2015). https://doi.org/10.1007/s00253-014-6175-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6175-8

Keywords

Navigation