Skip to main content
Log in

Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by “Candidatus Methylomirabilis oxyfera”. In the present study, the vertical distribution (0–10, 20–30, 50–60 and 90–100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50–60 and 90–100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 107 copies g−1 dry soil at depth of 50–60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50–60 and 90–100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g−1 dry soil d−1. It was estimated that the methane flux may increase by approximately 2.7–4.3 % in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50–60 and 90–100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Article  CAS  PubMed  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Białowiec A, Davies L, Albuquerque A, Randerson PF (2012) Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zone. J Environ Manag 97:22–27

    Article  Google Scholar 

  • Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Environ Sustainability 3:379–388

    Article  Google Scholar 

  • Boyd CE (1995) Bottom soils, sediment, and pond aquaculture. Chapman & Hall, New York, p 348

    Book  Google Scholar 

  • Chen J, Zhou ZC, Gu JD (2014) Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 98:5685–5696

    Article  CAS  PubMed  Google Scholar 

  • Chesnin L, Yien CH (1950) Turbidimetric determination of available sulfates. Soil Sci Soc Am Proc 5:149–151

    Google Scholar 

  • Clement JC, Pinay G, Marmonier P (2002) Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J Environ Qual 3:1025–1037

    Article  Google Scholar 

  • DeLong EF (2000) Microbiology—Resolving a methane mystery. Nature 407:577–579

    Article  CAS  PubMed  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77:4429–4436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dorich RA, Nelson DW (1984) Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soil. Soil Sci Soc Am J 48:72–75

    Article  CAS  Google Scholar 

  • Eller G, Kanel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee. Appl Environ Microbiol 71:8925–8928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hu BL, Shen LD, Du P, Zheng P, Xu XY, Zeng JN (2012a) The influence of intense chemical pollution on the community composition, diversity and abundance of anammox bacteria in the Jiaojiang Estuary (China). PLoS One 7:1–7

    Google Scholar 

  • Hu BL, Shen LD, Zheng P, Hu AH, Chen TT, Cai C, Liu S, Lou LP (2012b) Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River. Environ Microbiol Rep 4:540–547

    Article  CAS  PubMed  Google Scholar 

  • Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111:4495–4500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt PG, Poach ME, Liehr SK (2005) Nitrogen cycling in wetland systems. In: Dunne EJ, Reddy KR, Carton OT (eds) Nutrient management in agricultural watersheds: a wetland solution. Wageningen Academic Publishers, The Netherlands, pp 93–104

    Google Scholar 

  • Kampman C, Hendrickx TLG, Luesken FA, van Alen TA, Op den Camp HJM, Jetten MSM, Zeeman G, Buisman CJN, Temmink H (2012) Enrichment of denitrifying methanotrophic bacteria for application after direct low temperature anaerobic sewage treatment. J Hazard Mater 227–228:164–171

    Article  PubMed  Google Scholar 

  • Kempers AJ, Zweers A (1986) Ammonium determination in soil extracts by the salicylate acid method. Commun Soil Sci Plant Anal 17:715–723

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35:233–238

    Article  CAS  PubMed  Google Scholar 

  • Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TLG, Zeeman G, Temmink H, Strous M, Op den Camp HJM, Jetten MSM (2011a) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luesken FA, Zhu B, van Alen TA, Butler MK, Rodriguez Diaz M, Song B, Op den Camp HJM, Jetten MSM, Ettwig KF (2011b) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 11:3877–3880

    Article  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: Importance of scale and landscape setting. Ecol Econ 35:23–33

    Article  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Rolston DE (1986) Gas flux. In: Klute A (ed) Methods of Soil Analysis, vol 9, 2nd edn. American Society of Agronomy and Soil Science Society of America, Wisconsin, pp 1103–1119

    Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38

    Article  CAS  PubMed  Google Scholar 

  • Scott JT, McCarthy MJ, Gardner WS, Doyle RD (2008) Denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation along a nitrate concentration gradient in a created freshwater wetland. Biogeochemistry 87:99–111

    Article  CAS  Google Scholar 

  • Shen LD, He ZF, Zhu Q, Chen DQ, Lou LP, Xu XY, Zheng P, Hu BL (2012) Microbiology, ecology and application of the nitrite-dependent anaerobic methane oxidation process. Front Microbiol 3:269. doi:10.3389/fmicb.2012.00269

    PubMed Central  PubMed  Google Scholar 

  • Shen LD, Liu S, Lou LP, Liu WP, Xu XY, Zheng P, Hu BL (2013) Broad distribution of diverse anaerobic ammonium-oxidising bacteria in Chinese agricultural soils. Appl Environ Microbiol 19:6167–6172

    Article  Google Scholar 

  • Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL (2014a) Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microb Ecol 67:341–349

    Article  CAS  PubMed  Google Scholar 

  • Shen LD, Zhu Q, Liu S, Du P, Zeng JN, Cheng DQ, Xu XY, Zheng P, Hu BL (2014b) Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China). Appl Microbiol Biotechnol 98:5029–5038

    Article  CAS  Google Scholar 

  • Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mo Biol Evo 28:2731–2739

    Article  CAS  Google Scholar 

  • Wang Y, Zhu GB, Harhangi HR, Zhu BL, Jetten MSM, Yin CQ, Op den Camp HJ (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88

    Article  CAS  PubMed  Google Scholar 

  • Wray HE, Bailey E (2007) Denitrification rates in marsh fringes and fens in two boreal peatlands in Alberta, Canada. Wetlands 27:1036–1045

    Article  Google Scholar 

  • Zhu GB, Jetten MS, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Zhu BL, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Foundation (No. 51108408, No. 40081198 and No. 31170458) and the Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-lan Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Ld., Huang, Q., He, Zf. et al. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 99, 349–357 (2015). https://doi.org/10.1007/s00253-014-6031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6031-x

Keywords

Navigation