Skip to main content

Advertisement

Log in

Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 13 July 2014

Abstract

Indigenous oil-degrading bacteria play an important role in efficient remediation of polluted marine environments. In this study, we investigated the diversity and abundance of indigenous oil-degrading bacteria and functional genes in crude oil-contaminated seawater of the Dalian coast. The gene copy number bacterial 16S rRNA in total were determined to be about 1010 copies L−1 in contaminated seawater and 109 copies L−1 in uncontaminated seawater. Bacteria of Alcanivorax, Marinobacter, Novosphingobium, Rhodococcus, and Pseudoalteromonas were found to be predominant oil-degrading bacteria in the polluted seawater in situ. In addition, bacteria belonging to Algoriphagus, Aestuariibacter, Celeribacter, Fabibacter, Zobellia, Tenacibaculum, Citreicella, Roseivirga, Winogradskyella, Thioclava, Polaribacter, and Pelagibaca were confirmed to be the first time as an oil-degrading bacterium. The indigenous functional enzymes, including AlkB or polycyclic aromatic hydrocarbons ring-hydroxylating dioxygenases α (PAH-RHDα) coding genes from Gram-positive (GP) and Gram-negative bacteria (GN), were revealed and quite diverse. About 1010 to 1011 copies L−1 for the expression of alkB genes were recovered and showed that the two-thirds of all the AlkB sequences were closely related to widely distributed Alcanivorax and Marinobacter isolates. About 109 copies L−1 seawater for the expression of RHDαGN genes in contaminated seawater and showed that almost all RHDαGN sequences were closely related to an uncultured bacterium; however, RHDαGP genes represented only about 105 copies L−1 seawater for the expression of genes in contaminated seawater, and the naphthalene dioxygenase sequences from Rhodococcus and Mycobacterium species were most abundant. Together, their data provide evidence that there exists an active aerobic microbial community indigenous to the coastal area of the Yellow sea that is capable of degrading petroleum hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adesodun J, Mbagwu J (2008) Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresour Technol 99(13):5659–5665

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in US history. EnvironSci Technol 45(16):6709–6715

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Van Nostrand JD, Zhou J (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PLoS One 7(7):e41305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984

  • Brakstad O, Lødeng A (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Burns KA, Garrity SD, Levings SC (1993) How many years until mangrove ecosystems recover from catastrophic oil spills? Mar Pollut Bull 26(5):239–248

    Article  CAS  Google Scholar 

  • Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3

  • Chang C, Randolph A (1989) Precipitation of microsize organic particles from supercritical fluids. AIChE Journal 35(11):1876–1882

    Article  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scandina J Statist 11:265–270

    Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam S, Chandra S, McGarrell D, Schmidt TM, Garrity GM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31(1):442–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10(8):2138–2149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duran R (2010) Marinobacter handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1725–1735

    Book  Google Scholar 

  • Gertler C, Näther DJ, Cappello S, Gerdts G, Quilliam RS, Yakimov MM, Golyshin PN (2012) Composition and dynamics of biostimulated indigenous oil-degrading microbial consortia from the Irish, North and Mediterranean Seas: a mesocosm study. FEMS Microbiol Ecol 81(3):520–536

    Article  CAS  PubMed  Google Scholar 

  • Greer CD (2011) Toxicity of chemically dispersed crude oil to herring embryos.

  • Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7(11):2091–2104

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Micro Biotechnol 1(1):63–70

    CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. CurrOpin Biotechnol 15(3):205–214

    CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbio 4(3):173–182

    Article  CAS  Google Scholar 

  • Heck KL Jr, van Belle G, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56(6):1459–1461

    Article  Google Scholar 

  • Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9

    Article  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312–315

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evolut 16(2):111–120

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17(12):1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Kweon O, Kim S-J, Freeman JP, Song J, Baek S, Cerniglia CE (2010) Substrate specificity and structural characteristics of the novel rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio 1(2)

  • Larkin MJ, Allen CC, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181(19):6200–6204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee Y-J, Mason OU, Dubinsky EA, Chavarria KL (2011) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6(2):451–460

    Article  PubMed Central  PubMed  Google Scholar 

  • Magurran AE, Magurran AE (1988) Ecological diversity and its measurement, vol 168. Springer

  • Maruyama T, Ishikura M, Taki H, Shindo K, Kasai H, Haga M, Inomata Y, Misawa N (2005) Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14. Appl Environ Microbiol 71(12):7705–7715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9(1):165–176

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Di Marco G, Bruni V, Lo Giudice A (2007) Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 54(11):1754–1761

    Article  CAS  PubMed  Google Scholar 

  • Pepi M, Cesàro A, Liut G, Baldi F (2005) An antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsyfying glycolipid. FEMS Microbiol Ecol 53(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia A (2008) Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104(1):251–259

    CAS  PubMed  Google Scholar 

  • Röling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548

    Article  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evolut 4(4):406–425

    CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shannon C (1963) Works on the theory of information and cybernetics [Russian translation]. IL, Moscow

  • Smith CB, Tolar BB, Hollibaugh JT, King GM (2013) Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton. Front Microbiol 4:370

    PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58(4):427–440

    Article  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72(1):59–65

    Article  PubMed Central  PubMed  Google Scholar 

  • Viggor S, Juhanson J, Jõesaar M, Mitt M, Truu J, Vedler E, Heinaru A (2013) Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiol Res 168(7):415–427

    Article  CAS  PubMed  Google Scholar 

  • Vila J, Nieto JM, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73(2):349–362

    CAS  PubMed  Google Scholar 

  • Wang W, Shao Z (2012) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010a) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12(5):1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang L, Shao Z (2010b) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60(2):429–439

    Article  PubMed  Google Scholar 

  • Wang C, Bing C, Zhang B (2013) Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Mar Pollut Bull 71(4):64–68

    Article  CAS  PubMed  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(2):339–348

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project sponsored by the Scientific Research Foundation of Third Institute of Oceanography, SOA (2011036), Public Welfare Project of SOA (201005032), and the National Science Foundation of China (41106151, 41176154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongze Shao.

Additional information

Wanpeng Wang and Rongqiu Zhong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhong, R., Shan, D. et al. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China. Appl Microbiol Biotechnol 98, 7253–7269 (2014). https://doi.org/10.1007/s00253-014-5817-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5817-1

Keywords

Navigation